對于給定的函數(shù)f(x)=2x-2-x,有下列4個結(jié)論,其中正確結(jié)論的序號是______;
(1)f(x)的圖象關(guān)于原點對稱; (2)f(log23)=2;(3)f(x)在R上是增函數(shù);    (4)f(|x|)有最小值0.
因為f(x)=2x-2-x,故f(-x)=2-x-2x=-f(x),所以(1)對,
由對數(shù)計算公式可知(2)不對;
又因為y=2x在R上是增函數(shù),且y=2-x在R上是減函數(shù),所以f(x)=2x-2-x在R上是增函數(shù),所以(3)對,
因為f(|x|)是偶函數(shù)且在上是增函數(shù),所以最小值為f(0)=0,所以(4)對,
故答案為:(1)(3)(4).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在實數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A、B為常數(shù)),使得f(x)≥g(x)對一切實數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個承托函數(shù).給出如下四個命題:
①對于給定的函數(shù)f(x),其承托函數(shù)可能不存在,也可能有無數(shù)個;
②定義域和值域都是R的函數(shù)f(x)不存在承托函數(shù);
③g(x)=2x為函數(shù)f(x)=|3x|的一個承托函數(shù);
g(x)=
12
x
為函數(shù)f(x)=x2的一個承托函數(shù).
其中正確的命題有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x),如果存在函數(shù)g(x)=kx+b(k,b為常數(shù)),使得f(x)≥g(x)對一切實數(shù)x都成立,則稱g(x)是函數(shù)f(x)的一個“親密函數(shù)”,現(xiàn)有如下的命題:
(1)對于給定的函數(shù)f(x),其“親密函數(shù)”有可能不存在,也可能有無數(shù)個;
(2)g(x)=2x是f(x)=2x,的一個“親密函數(shù)”;
(3)定義域與值域都是R的函數(shù)f(x),不存在“親密函數(shù)”.
其中正確的命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的二次函數(shù)R(x)=ax2+bx+c滿足2R(-x)-2R(x)=0,且R(x)的最小值為0,函數(shù)h(x)=lnx,又函數(shù)f(x)=h(x)-R(x).
(I)求f(x)的單調(diào)區(qū)間;  
(II)當(dāng)a≤
1
2
時,若x0∈[1,3],求f(x0)的最小值;
(III)若二次函數(shù)R(x)圖象過(4,2)點,對于給定的函數(shù)f(x)圖象上的點A(x1,y1),當(dāng)x1=
3
2
時,探求函數(shù)f(x)圖象上是否存在點B(x2,y2)(x2>2),使A、B連線平行于x軸,并說明理由.(參考數(shù)據(jù):e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于給定的函數(shù)f(x)=2x-2-x,有下列四個結(jié)論:
①f(x)的圖象關(guān)于原點對稱;           ②f(x)在R上不是增函數(shù);
③f(|x|)的圖象關(guān)于y軸對稱;          ④f(|x|)的最小值為0.
其中正確的結(jié)論是
①③④
①③④
(填寫正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的二次函數(shù)R(x)=ax2+bx(a>0)是偶函數(shù),函數(shù)f(x)=2lnx-R(x).
(I)求f(x)的單調(diào)區(qū)間;  
(II)當(dāng)a≤1時,若x0∈[1,2],求f(x0)的最大值;
(III)若二次函數(shù)R(x)圖象過(1,1)點,對于給定的函數(shù)f(x)圖象上的點A(x1,y1),當(dāng)x1=
1e
時,探求函數(shù)f(x)圖象上是否存在點B(x2,y2)(x2>1),使A、B連線平行于x軸,并說明理由.(參考數(shù)據(jù):e=2.71828…)

查看答案和解析>>

同步練習(xí)冊答案