已知矩形ABCD的邊AB=a,BC=4,PA⊥平面ABCD,PA=2,如果BC邊上存在點M,使PM⊥MD,則a的取值范圍是
(0,2]
(0,2]
分析:連結(jié)AM,根據(jù)條件,要使PM⊥MD,則DM⊥面PAM,即DM⊥AM即可.然后利用圓的性質(zhì),只要保證以AB為直徑的圓和BC有交點即可.
解答:解:∵PA⊥平面ABCD,
∴PA⊥DM,
若BC邊上存在點M,使PM⊥MD,
則DM⊥面PAM,
即DM⊥AM,
∴以AD為直徑的圓和BC相交即可.
∵AD=BC=4,
∴圓的半徑為2,
要使線段BC和半徑為2的圓相交,
則0<AB≤2,
即0<a≤2,
∴a的取值范圍是(0,2].
故答案為:(0,2].
點評:本題主要考查線面垂直的性質(zhì)的應用,將線面垂直轉(zhuǎn)化為直線垂直進而利用圓的性質(zhì)是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知矩形ABCD的邊AB=4cm,BC=3cm,如圖所示,矩形的頂點A,B為某一橢圓的兩個焦點,且橢圓經(jīng)過矩形的另外兩個頂點C,D,試建立適當?shù)淖鴺讼,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知矩形ABCD的邊AB=a,BC=2,PA⊥平面ABCD,PA=2,現(xiàn)有以下五個數(shù)據(jù):( 1 ) a=
1
2
 ;    ( 2 ) a=1 ;    ( 3 )a=
;    ( 4 ) a=2 ;    ( 5 ) a=4
,
當在BC邊上存在點Q,使PQ⊥QD時,則a可以取
①或②
①或②
.(填上一個正確的數(shù)據(jù)序號即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•臨沂三模)已知矩形ABCD的邊AB⊥x軸,且矩形ABCD恰好能完全覆蓋函數(shù)y=asin2ax(a>0)的一個完整周期的圖象,則當a變化時,矩形ABCD的周長的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知矩形ABCD的邊長為2,點P在線段BD上運動,則
AP
AC
=
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知矩形ABCD的邊AB=1,BC=a,PA⊥平面ABCD,問BC邊上是否存在點Q,使得PQ⊥QD?并說明理由.

查看答案和解析>>

同步練習冊答案