如圖,ABCD是平行四邊形,S是平面ABCD外一點(diǎn),M為SC的中點(diǎn).求證:SA∥平面MDB.
考點(diǎn):直線與平面平行的判定
專題:證明題,空間位置關(guān)系與距離
分析:證明SA∥平面MDB,只需證明SA平行于平面MDB內(nèi)的一條直線即可,而M為中點(diǎn),所以連接AC、BD交于點(diǎn)O.由條件知道O為AC中點(diǎn),從而MO為三角形SAC的中位線,從而得到SA∥OM,得證.
解答: 證明:(1)設(shè)AC與BD的交點(diǎn)為O,
因?yàn)樗倪呅蜛BCD是平行四邊形,所以O(shè)為AC的中點(diǎn),
又M為SC的中點(diǎn),所以,OM為三角形SAC的中位線,
所以SA∥OM,
又OM?面MDB,SA?面MDB,
所以,SA∥平面MDB.
點(diǎn)評(píng):本題考查線面平行的判定,將線面平行轉(zhuǎn)化為線線平行是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},滿足an+1=
1
1-an
,若a1=
1
2
,則a2014=( 。
A、
1
2
B、2
C、-1
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=|cosx|,(x>0)與直線y=kx有且僅有兩個(gè)公共點(diǎn),其橫坐標(biāo)分別為α、β,且α<β,則( 。
A、β=
cosβ
cosα
B、β=
αcosβ
cosα
C、β=
cosβ
k
D、β=-
cosβ
sinβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于直線a,b以及平面M,N,下列命題中正確的是( 。
A、若a∥M,b∥M,則a∥b
B、若b∥M,a⊥b,則a⊥M
C、若b?M,a⊥b,則a⊥M
D、若a⊥M,a?N,則M⊥N

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy上取兩個(gè)定點(diǎn)A1(-2,0),A2(2,0),再取兩個(gè)動(dòng)點(diǎn)N1(0,m),N2(0,n),且mn=3.
(1)求直線A1N1與A2N2交點(diǎn)的軌跡M的方程;
(2)已知點(diǎn)G(1,0)和G′(-1,0),點(diǎn)P在軌跡M上運(yùn)動(dòng),現(xiàn)以P為圓心,PG為半徑作圓P,試探究是否存在一個(gè)以點(diǎn)G′(-1,0)為圓心的定圓,總與圓P內(nèi)切?若存在,求出該定圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin(
2
+θ)=
1
4
,求.
cos(θ-2π)
sin(
π
2
-θ)cos(θ+π)+cos(-θ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f0(x)=xex,f1(x)=f0′(x),f2(x)=f1′(x),…fn(x)=fn-1′(x),n∈N*
(1)請(qǐng)寫出fn(x)的表達(dá)式(不需要證明),并求fn(x)的極小值;
(2)設(shè)gn(x)=-x2-2(n+1)-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,證明:a-b≥e-4
(3)設(shè)φ(x)=x2+a|ln[f0(x)]-x-1|,(a>0),若φ(x)≥
3
2
a,x∈[1,+∞)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,a5=7,a8=56,求等比數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)fn(x)=x-(n2+2n)x2(其中n∈N*),區(qū)間In={x|fn(x)>0}.
(Ⅰ)求區(qū)間In的長(zhǎng)度(注:區(qū)間(α,β)的長(zhǎng)度定義為β-α);
(Ⅱ)把區(qū)間In的長(zhǎng)度記作數(shù)列{an},令Sn=a1+a2+…+an,證明:
1
3
≤Sn
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案