沿著正四面體OABC的三條棱、的方向有大小等于1、2和3的三個力f1、f2、f3.試求此三個力的合力f的大小以及此合力與三條棱所夾角的余弦值.

解:如圖所示,用a、b、c分別代表棱、上的三個單位向量,則f1=a,f2=2b,f3=3c,

f=f1+f2+f3=a+2b+3c.

∴|f2=(a+2b+3c)·(a+2b+3c)

=|a|2+4|b|2+9|c(diǎn)|2+4a·b+6a·c+12b·c

=1+4+9+4|a||b|c(diǎn)os〈a,b〉+6|a||c(diǎn)|c(diǎn)os〈a,c〉+12|b||c(diǎn)|c(diǎn)os〈b,c〉

=14+4cos60°+6cos60°+12cos60°

=14+2+3+6=25.

∴|f|=5,即所求合力的大小為5.

且cos〈f,a〉=

同理,可得cos〈f,b〉=,

cos〈f,c〉=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,一棱長為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問在線段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

沿著正四面體O—ABC的三條棱,,的方向有大小等于1、2和3的三個力f1,f2,f3.試求此三個力的合力f的大小以及此合力與三條棱所夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江西省贛州三中、于都中學(xué)高三聯(lián)合考試數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,一棱長為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問在線段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京大學(xué)附中高三數(shù)學(xué)提高練習(xí)試卷(4)(解析版) 題型:解答題

如圖,一棱長為2的正四面體O-ABC的頂點(diǎn)O在平面α內(nèi),底面ABC平行于平面α,平面OBC與平面α的交線為l.
(1)當(dāng)平面OBC繞l順時(shí)針旋轉(zhuǎn)與平面α第一次重合時(shí),求平面OBC轉(zhuǎn)過角的正弦
值.
(2)在上述旋轉(zhuǎn)過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點(diǎn)為O1.當(dāng)AO⊥平面α?xí)r,問在線段OA上是否存在一點(diǎn)P,使O1P⊥OBC?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案