20.函數(shù)f(x)=$\frac{\sqrt{2-x}}{{log}_{2}x}$的定義域為( 。
A.{x|0<x≤2}B.{x|0<x≤2且x≠1}C.{x|0<x<2}D.{x|0<x<2且x≠1}

分析 由根式內(nèi)部的代數(shù)式大于等于0,分式的分母不為0聯(lián)立不等式組求解.

解答 解:由$\left\{\begin{array}{l}{2-x≥0}\\{lo{g}_{2}x≠0}\end{array}\right.$,解得:0<x≤2,且x≠1.
∴函數(shù)f(x)=$\frac{\sqrt{2-x}}{{log}_{2}x}$的定義域為{x|0<x≤2,且x≠1}.
故選:B.

點評 本題考查函數(shù)的定義域及其求法,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.從1,2,3,4,5,6這6個數(shù)字中,任取2個數(shù)字相加,其和為奇數(shù)的概率為( 。
A.$\frac{2}{5}$B.$\frac{1}{2}$C.$\frac{8}{15}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(1,-$\frac{\sqrt{3}}{3}$),則向量$\overrightarrow{a}$的模為2;向量$\overrightarrow{a}$、$\overrightarrow$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若a=20.5,b=log0.25,c=0.52,則a、b、c三個數(shù)的大小關(guān)系式( 。
A.c<a<bB.b<c<aC.c<b<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=-$\frac{1}{3}$x3-x2,則曲線y=f(x)在點(1,f(1))處的切線斜率為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若拋物線y2=2px(p>0)的準(zhǔn)線方程為x=-4,則p的值為(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.將質(zhì)地均勻的硬幣連續(xù)拋擲2次,則2次都是正面向上的概率(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π),則sin2α的值為( 。
A.$\frac{7}{25}$B.$\frac{24}{25}$C.-$\frac{24}{25}$D.-$\frac{12}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=1+$\frac{4}{x}$,g(x)=log2x;
設(shè)函數(shù)h(x)=g(x)-f(x)求函數(shù)h(x)在區(qū)間[2,4]上的值域;
定義min{p,q}表示p,q中較小者,設(shè)函數(shù)H(x)=min{f(x),g(x)}(x>0)
①求函數(shù)H(x)的最大值;
②若函數(shù)y=H(x)-k有兩個零點,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案