9.已知sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π),則sin2α的值為( 。
A.$\frac{7}{25}$B.$\frac{24}{25}$C.-$\frac{24}{25}$D.-$\frac{12}{25}$

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα的值,進(jìn)而利用二倍角的正弦函數(shù)公式可求sin2α的值.

解答 解:∵sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π),
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{3}{5}$,
∴sin2α=2sinαcosα=-$\frac{24}{25}$.
故選:C.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.橢圓$\frac{{x}^{2}}{4}$+y2=1的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=$\frac{\sqrt{2-x}}{{log}_{2}x}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|0<x≤2}B.{x|0<x≤2且x≠1}C.{x|0<x<2}D.{x|0<x<2且x≠1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓O:x2+y2+6x-2y+6=0,若斜率存在且不等于0的直線l過點(diǎn)A(4,0)且被圓O截得的弦長(zhǎng)為2$\sqrt{3}$,則直線l的方程為( 。
A.24x+7y-28=0B.7x+24y-28=0C.24x-7y-28=0D.7x-24y-28=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.甲乙兩人進(jìn)行中國(guó)象棋比賽,甲贏的概率為0.5,下和的概率為0.2,則甲不輸?shù)母怕蕿?.7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知{an}是遞增的等比數(shù)列,若a2=3,a4-a3=18,則a5的值為81;{an}的前5項(xiàng)的和S5的值為121.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.△ABC中,若$\overrightarrow{AD}$=2$\overrightarrow{DB}$,$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$,則λ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一個(gè)幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積為64+32$\sqrt{2}$cm2,體積為$\frac{160}{3}$cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)=sinωx-cosωx(ω>$\frac{1}{4}$,x∈R),若f(x)的任何一條對(duì)稱軸與x軸交點(diǎn)的橫坐標(biāo)都不屬于區(qū)間(2π,3π),則ω的取值范圍是( 。
A.[$\frac{3}{8}$,$\frac{11}{12}$]∪[$\frac{11}{8}$,$\frac{19}{12}$]B.($\frac{1}{4}$,$\frac{5}{12}$]∪[$\frac{5}{8}$,$\frac{3}{4}$]
C.[$\frac{3}{8}$,$\frac{7}{12}$]∪[$\frac{7}{8}$,$\frac{11}{12}$]D.($\frac{1}{4}$,$\frac{3}{4}$]∪[$\frac{9}{8}$,$\frac{17}{12}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案