分析 (1)通過證明AF⊥平面PBE即可解決;
(2)由題意,平面PAE⊥平面DAE,點D到平面PAE的距離等于點D到AE的距離,利用等面積可得結(jié)論.
解答 (1)證明:∵PA⊥平面ABCD,BE?平面ABCD,
∴EB⊥PA,又EB⊥AB,AB∩AP=A,AB,AP?平面PAB,
∴EB⊥平面PAB,又AF?平面PAB
∴AF⊥BE.
又PA=AB=1,點F是PB的中點,
∴AF⊥PB,
又∵PB∩BE=B,PB,BE?平面PBE,
∴AF⊥平面PBE.
∵PE?平面PBE,
∴AF⊥PE;
(2)解:由題意,平面PAE⊥平面DAE,
∴點D到平面PAE的距離等于點D到AE的距離,
△DAE中,AD=$\sqrt{3}$,AE=$\sqrt{1+\frac{3}{4}}$=$\frac{\sqrt{7}}{2}$,
利用等面積可得$\frac{1}{2}×\sqrt{3}×1$=$\frac{1}{2}×\frac{\sqrt{7}}{2}$h,
∴h=$\frac{2\sqrt{21}}{7}$.
點評 無論是線面平行(垂直)還是面面平行(垂直),都源自于線與線的平行(垂直),這種“高維”向“低維”轉(zhuǎn)化的思想方法,在解題時非常重要,在處理實際問題的過程中,可以先從題設(shè)條件入手,分析已有的平行(垂直)關(guān)系,再從結(jié)論入手分析所要證明的平行(垂直)關(guān)系,從而架起已知與未知之間的橋梁.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a-3<b-3 | B. | -3a<-3b | C. | a2<b2 | D. | $\frac{1}{a}$$<\frac{1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com