分析 (Ⅰ)f(x)解析式利用二倍角的余弦函數(shù)公式化簡(jiǎn),再利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),找出ω的值,代入計(jì)算即可求出函數(shù)f(x)的最小正周期;
(Ⅱ)設(shè)t=2x+$\frac{π}{4}$,由x的范圍求出t的范圍,根據(jù)y=sint的增減性求出函數(shù)f(x)的值域即可.
解答 解:(Ⅰ)f(x)=sin2x-2sin2x=sin2x-1+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)-1,
∵ω=2,
∴T=π;
則函數(shù)f(x)的最小正周期為π;
(Ⅱ)設(shè)t=2x+$\frac{π}{4}$,當(dāng)x∈[-$\frac{π}{4}$,$\frac{3π}{8}$]時(shí),-$\frac{π}{4}$≤t≤π,
∵函數(shù)y=sint在[-$\frac{π}{4}$,$\frac{π}{2}$]上為增函數(shù),在[$\frac{π}{2}$,π]上為減函數(shù),
則當(dāng)t=-$\frac{π}{4}$時(shí),sint有最小值為-$\frac{\sqrt{2}}{2}$;當(dāng)t=$\frac{π}{2}$時(shí),sint有最大值為1,
則y=f(x)在[-$\frac{π}{4}$,$\frac{3π}{8}$]上的值域?yàn)閇-2,$\sqrt{2}$-1].
點(diǎn)評(píng) 此題考查了三角函數(shù)中的恒等變換應(yīng)用,以及三角函數(shù)的周期性及其求法,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8π | B. | 24π | C. | 16π | D. | 32π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com