【題目】在直角坐標系中,曲線的參數(shù)方程為,(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.

1)寫出曲線的極坐標方程和曲線的直角坐標方程;

2)若射線與曲線相交于點,將逆時針旋轉(zhuǎn)后,與曲線相交于點,且,求的值.

【答案】12

【解析】

1)消去曲線參數(shù)方程中的,求得其普通方程,再根據(jù)極坐標和直角坐標轉(zhuǎn)化的公式,求得曲線的極坐標方程.利用極坐標和直角坐標轉(zhuǎn)化的公式,求得的直角坐標方程.

2)將代入的極坐標方程,求得的值,然后將曲線的極坐標方程,求得的值.根據(jù)列方程,求得的值,進而求得的大小.

1)由曲線的參數(shù)方程為,(為參數(shù)),可得其普通方程

,得曲線的極坐標方程.

,得曲線的直角坐標方程.

2)將代入

.

逆時針旋轉(zhuǎn),得的極坐標方程為,代入曲線的極坐標方程,得.

,得,.

,解得.

因為,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,四邊形ABCD為正方形,平面ACD,且,EPD的中點.

(Ⅰ)證明:平面平面PAD

(Ⅱ)求直線PA與平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

如圖,在三棱錐, 側(cè)面與側(cè)面均為等邊三角形,中點.

)證明:平面

)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)某種型號的電視機零配件,為了預測今年月份該型號電視機零配件的市場需求量,以合理安排生產(chǎn),工廠對本年度月份至月份該型號電視機零配件的銷售量及銷售單價進行了調(diào)查,銷售單價(單位:元)和銷售量(單位:千件)之間的組數(shù)據(jù)如下表所示:

月份

銷售單價(元)

銷售量(千件)

(1)根據(jù)1至月份的數(shù)據(jù),求關于的線性回歸方程(系數(shù)精確到);

(2)結(jié)合(1)中的線性回歸方程,假設該型號電視機零配件的生產(chǎn)成本為每件元,那么工廠如何制定月份的銷售單價,才能使該月利潤達到最大(計算結(jié)果精確到)?

參考公式:回歸直線方程,其中.

參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若執(zhí)行下面的程序框圖,輸出的值為3,則判斷框中應填入的條件是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每個國家對退休年齡都有不一樣的規(guī)定,從2018年開始,我國關于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對延遲退休的態(tài)度,現(xiàn)從某地市民中隨機選取100人進行調(diào)查,調(diào)查情況如下表:

年齡段(單位:歲)

被調(diào)查的人數(shù)

贊成的人數(shù)

1)從贊成延遲退休的人中任選1人,此人年齡在的概率為,求出表格中的值;

2)若從年齡在的參與調(diào)查的市民中按照是否贊成延遲退休進行分層抽樣,從中抽取10人參與某項調(diào)查,然后再從這10人中隨機抽取4人參加座談會,記這4人中贊成延遲退休的人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,橢圓、,為橢圓的左、右頂點.

為橢圓的左焦點,證明:當且僅當橢圓上的點在橢圓的左、右頂點時,取得最小值與最大值.

若橢圓上的點到焦點距離的最大值為,最小值為,求橢圓的標準方程.

若直線中所述橢圓相交于兩點(、不是左、右頂點),且滿足,求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設X~N(μ1,),Y~N(μ2,),這兩個正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 對任意正數(shù)t,P(X≥t)≥P(Y≥t)

D. 對任意正數(shù)t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)若函數(shù)有極小值,求該極小值的取值范圍.

查看答案和解析>>

同步練習冊答案