設(shè)數(shù)列滿足:,(n=1,2,…)。
(1)令,(n=1,2,…)。求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn
(1)同解析;(2)
(1)
(2) 
    所以

 
得到
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
(注意:在試題卷上作答無(wú)效)
設(shè)函數(shù).?dāng)?shù)列滿足
(Ⅰ)證明:函數(shù)在區(qū)間是增函數(shù);
(Ⅱ)證明:
(Ⅲ)設(shè),整數(shù).證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}是公比為q的等比數(shù)列,Sn是其前n項(xiàng)和,且S3,S9,S6成等差數(shù)列
(1)求證:a2 , a8, a5也成等差數(shù)列
(2)判斷以a2, a8, a5為前三項(xiàng)的等差數(shù)列的第四項(xiàng)是否也是數(shù)列{an}中的一項(xiàng),若是求出這一項(xiàng),若不是請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{an}的首項(xiàng)a1∈(0,1),,n=2,3,4,….(Ⅰ)求{an}的通項(xiàng)公式;(Ⅱ)設(shè),證明bn<bn+1,其中n為正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=nan+an—c(c是常數(shù),n∈N*),a2=6.
(Ⅰ)求c的值及{an}的通項(xiàng)公式;
(Ⅱ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列中,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù),數(shù)列的通項(xiàng)滿足
(1)求數(shù)列的通項(xiàng)公式;(2)判定數(shù)列{a n }的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

                                   a11,a12,……a18
a21,a22,……a28
……………………
64個(gè)正數(shù)排成8行8列, 如下所示:        a81,a82,……a88
在符合中,i表示該數(shù)所在的行數(shù),j表示該數(shù)所在的列數(shù)。已知每一行中的數(shù)依次都成等差數(shù)列,而每一列中的數(shù)依次都成等比數(shù)列(每列公比q都相等)且,,。  
⑴若,求的值。
⑵記第n行各項(xiàng)之和為An(1≤n≤8),數(shù)列{an}、{bn}、{cn}滿足,聯(lián)(m為非零常數(shù)),,且,求的取值范圍。
⑶對(duì)⑵中的,記,設(shè),求數(shù)列中最大項(xiàng)的項(xiàng)數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若等差數(shù)列的前項(xiàng)和為,且為一確定的常數(shù),則下列各式中,也為確定的常數(shù)的是                                                    (     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案