分析 (Ⅰ)由條件利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性和最值求得f(x)的最小正周期和最大值.
(Ⅱ)根據(jù)2x-$\frac{π}{3}$∈[0,π],利用正弦函數(shù)的單調(diào)性,分類(lèi)討論求得f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上的單調(diào)性.
解答 解:(Ⅰ)函數(shù)f(x)=sin(${\frac{π}{2}$-x)sinx-$\sqrt{3}{cos^2}$x=cosxsinx-$\frac{\sqrt{3}}{2}$(1+cos2x)
=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x-$\frac{\sqrt{3}}{2}$=sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,
故函數(shù)的周期為$\frac{2π}{2}$=π,最大值為1-$\frac{\sqrt{3}}{2}$.
(Ⅱ)當(dāng)x∈$[{\frac{π}{6},\frac{2π}{3}}]$ 時(shí),2x-$\frac{π}{3}$∈[0,π],故當(dāng)0≤2x-$\frac{π}{3}$≤$\frac{π}{2}$時(shí),即x∈[$\frac{π}{6}$,$\frac{5π}{12}$]時(shí),f(x)為增函數(shù);
當(dāng)$\frac{π}{2}$≤2x-$\frac{π}{3}$≤π時(shí),即x∈[$\frac{5π}{12}$,$\frac{2π}{3}$]時(shí),f(x)為減函數(shù).
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性和最值,正弦函數(shù)的單調(diào)性,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | |x|=x|sgnx| | B. | |x|=xsgn|x| | C. | |x|=|x|sgnx | D. | |x|=xsgnx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}+π$ | B. | $\frac{2}{3}+π$ | C. | $\frac{1}{3}+2π$ | D. | $\frac{2}{3}+2π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2} | B. | {1,2} | C. | {1,3} | D. | {1,2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±$\frac{1}{2}$ | B. | ±$\frac{{\sqrt{2}}}{2}$ | C. | ±1 | D. | ±$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{25}{2}$ | B. | $\frac{49}{2}$ | C. | 12 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1} | B. | {1} | C. | {1,-1} | D. | ∅ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com