【題目】2019年10月13日,中國鄭開國際馬拉松賽在鄭東新區(qū)開賽.比賽之前,從某大學(xué)報(bào)名的30名大學(xué)生中選8人進(jìn)行志愿者服務(wù),請分別用抽簽法和隨機(jī)數(shù)法設(shè)計(jì)抽樣方案.
【答案】見解析
【解析】
首先對(duì)30名志愿者進(jìn)行編號(hào),抽簽法將30個(gè)號(hào)碼寫在外形完全相同的紙片上,然后抽取8個(gè)紙片即可;隨機(jī)數(shù)法利用隨機(jī)數(shù)工具產(chǎn)生1~30范圍內(nèi)的整數(shù)隨機(jī)數(shù),然后按一定的方法讀取8個(gè)樣本內(nèi)的號(hào)碼即可.
(1)抽簽法.
第一步,將30名大學(xué)生隨機(jī)編號(hào),編號(hào)為1,2,3,…,29,30;
第二步,將30個(gè)號(hào)碼分別寫在30張完全一樣的卡片上,制成號(hào)簽;
第三步,將30個(gè)號(hào)簽放入一個(gè)不透明的盒子里,充分?jǐn)嚢瑁?/span>
第四步,從盒子中不放回地逐個(gè)抽取8個(gè)號(hào)簽,并記錄上面的編號(hào),編號(hào)對(duì)應(yīng)的大學(xué)生,就是選出的志愿者成員.
(2)隨機(jī)數(shù)法.
第一步,將30名大學(xué)生隨機(jī)編號(hào),編號(hào)為1,2,3,…,29,30;
第二步,用隨機(jī)數(shù)工具產(chǎn)生1~30范圍內(nèi)的整數(shù)隨機(jī)數(shù),把產(chǎn)生的隨機(jī)數(shù)作為抽取的編號(hào),若生成的隨機(jī)數(shù)有重復(fù),則重新產(chǎn)生新的隨機(jī)數(shù).
假設(shè)最終產(chǎn)生的隨機(jī)數(shù)為13,14,10,12,26,27,5,3;
第三步,找出以上隨機(jī)數(shù)對(duì)應(yīng)的大學(xué)生,就是選出的志愿者成員.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={1,3,x2},B={1,2﹣x},且BA.
(1)求實(shí)數(shù)x的值;
(2)若B∪C=A,求集合C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人做試驗(yàn),從一個(gè)裝有標(biāo)號(hào)為1,2,3,4的小球的盒子中,無放回地取兩個(gè)小球,每次取一個(gè),先取的小球的標(biāo)號(hào)為x,后取的小球的標(biāo)號(hào)為y,這樣構(gòu)成有序?qū)崝?shù)對(duì)(x,y).
(1)寫出這個(gè)試驗(yàn)的所有結(jié)果;
(2)寫出“第一次取出的小球上的標(biāo)號(hào)為2”這一事件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于被墨水污染,一道數(shù)學(xué)題僅能見到如下文字:已知二次函數(shù)y=ax2+bx+c的圖象過點(diǎn)(1,0)…求證:這個(gè)二次函數(shù)的圖象關(guān)于直線x=2對(duì)稱。根據(jù)現(xiàn)有信息,題中的二次函數(shù)不一定具有的性質(zhì)是( )
A. 在x軸上截得的線段的長度是2
B. 與y軸交于點(diǎn)(0,3)
C. 頂點(diǎn)是(2,2)
D. 過點(diǎn)(3,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】乒乓球比賽結(jié)束后,錯(cuò)過觀看比賽的某記者詢問進(jìn)入決賽的甲、乙、丙、丁四名運(yùn)動(dòng)員誰是冠軍的獲得者.甲說:我沒有獲得冠軍;乙說:丁獲得了冠軍;丙說:乙獲得了冠軍;丁說:我也沒有獲得冠軍。這時(shí)裁判員過來說:他們四個(gè)人中只有一個(gè)人說的假話。則獲得冠軍的是________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于定義域?yàn)镈的函數(shù),若同時(shí)滿足下列條件:①在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間,使在上的值域?yàn)?/span>,則把叫閉函數(shù)。
(1)求閉函數(shù)符合條件②的區(qū)間;
(2)判斷函數(shù)是否為閉函數(shù)?并說明理由;
(3)已知是正整數(shù),且定義在的函數(shù)是閉函數(shù),求正整數(shù)的最小值,及此時(shí)實(shí)數(shù)k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn)(1,f(1))處的切線為y=1.
(1)求a,b的值;
(2)問是否存在實(shí)數(shù)m,使得當(dāng)x∈(0,1]時(shí),的最小值為0?若存在求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,將一矩形花壇ABCD擴(kuò)建成一個(gè)更大的矩形花園AMPN,要求B在AM上,D在AN上,且對(duì)角線MN過C點(diǎn),已知|AB|=3米,|AD|=2米。
(1)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?
(2)當(dāng)AN的長度是多少時(shí),矩形AMPN的面積最?并求出最小面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)。
(1)若存在最大值,且,求的取值范圍。
(2)當(dāng)時(shí),試問方程是否有實(shí)數(shù)根,若有,求出所有實(shí)數(shù)根;若沒有,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com