A. | 1 | B. | -1 | C. | -$\frac{π}{2}$ | D. | $\frac{π}{2}$ |
分析 問題轉(zhuǎn)化為k>xsinx-cosx,令g(x)=xsinx-cosx,求出函數(shù)g(x)的單調(diào)性,從而求出k的最小值.
解答 解:f′(x)=k+cosx-xsinx,x∈(0,$\frac{π}{2}$),
令f′(x)>0,得:k>xsinx-cosx,
令g(x)=xsinx-cosx,x∈(0,$\frac{π}{2}$),
∴g′(x)=2sinx+xcosx>0,
∴g(x)在(0,$\frac{π}{2}$)單調(diào)遞增,
∴k≥g($\frac{π}{2}$)=$\frac{π}{2}$,
故選:D.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,轉(zhuǎn)化思想,是一道基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n-1 | B. | n | C. | ($\frac{3}{2}$)n-1 | D. | 2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
第1組 | 562 | 557 | 559 | 560 | 562 | 559 | 563 | 558 |
第2組 | 557 | 565 | 561 | 564 | 558 | 565 | 556 | 562 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 13 | C. | 24 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b2f(a)<a2f(b),b3f(a)>a3f(b) | B. | b2f(a)>a2f(b),b3f(a)<a3f(b) | ||
C. | b2f(a)>a2f(b),b3f(a)>a3f(b) | D. | b2f(a)<a2f(b),b3f(a)<a3f(b) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 12 | C. | 14 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,(x+3)(x+7)≤(x+4)(x+6) | B. | ?x∈R,|x-2|+|x+3|=5 | ||
C. | ?x∈R,若a≥b,則ax2≥bx2 | D. | ?x∈R,$\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com