下列命題:

①函數(shù)y=sin(x)在[0,π]上是減函數(shù);②點(diǎn)A(1,1)、B(2,7)在直線3xy=0兩側(cè);③數(shù)列{an}為遞減的等差數(shù)列,a1a5=0,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則當(dāng)n=4時(shí),Sn取得最大值;

④定義運(yùn)算a1b2a2b1,則函數(shù)f(x)=的圖像在點(diǎn)(1,)處的切線方程是6x-3y-5=0.其中正確命題的序號(hào)是________.(把所有正確命題的序號(hào)都寫(xiě)上).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①函數(shù)y=sin(
2
-2x)
是偶函數(shù);
②函數(shù)y=sin(x+
π
4
)
在閉區(qū)間[-
π
2
,
π
2
]
上是增函數(shù);
③直線x=
π
8
是函數(shù)y=sin(2x+
4
)
圖象的一條對(duì)稱(chēng)軸;
④若cosx=-
1
3
,x∈(0,2π)
,則x=arcos(-
1
3
)或π+arcos(-
1
3

其中正確的命題的序號(hào)是:
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=lg
x2+1|x|
(x≠0,x∈R)
有下列命題:
①函數(shù)y=f(x)的圖象關(guān)于y軸對(duì)稱(chēng);
②在區(qū)間(-∞,0)上,函數(shù)y=f(x)是減函數(shù);
③函數(shù)f(x)的最小值為lg2;
④在區(qū)間(1,∞)上,函數(shù)f(x)是增函數(shù).
其中正確命題序號(hào)為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列命題:
①函數(shù)y=sin(-2x+
π
3
)
的單調(diào)增區(qū)間是[-kπ-
π
12
,-kπ+
12
](k∈Z)

②要得到函數(shù)y=cos(x-
π
6
)
的圖象,需把函數(shù)y=sinx的圖象上所有點(diǎn)向左平行移動(dòng)
π
3
個(gè)單位長(zhǎng)度.
③已知函數(shù)f(x)=2cos2x-2acosx+3,當(dāng)a≤-2時(shí),函數(shù)f(x)的最小值為g(a)=5+2a.
④y=sinwx(w>0)在[0,1]上至少出現(xiàn)了100次最小值,則w≥
399
2
π

其中正確命題的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關(guān)于x=2對(duì)稱(chēng);
②函數(shù)y=f(x)導(dǎo)函數(shù)為y=f′(x),若f′(x0)=0,則f(x0)必為函數(shù)y=f(x)的極值;
③函數(shù)y=sinx在一象限單調(diào)遞增;
④y=tanx在其定義域內(nèi)為單調(diào)增函數(shù).
其中正確的命題序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=sin2x-cos2x有下列命題:
①函數(shù)y=f(x)的周期為π;                
②直線x=
π
4
是y=f(x)圖象的一條對(duì)稱(chēng)軸;
點(diǎn)(
π
8
,0)
是y=f(x)圖象的一個(gè)對(duì)稱(chēng)中心;
(-
π
8
8
)
是函數(shù)y=f(x)的一個(gè)單調(diào)遞減區(qū)間.
其中真命題的序號(hào)是
①③
①③

查看答案和解析>>

同步練習(xí)冊(cè)答案