已知函數(shù)f(x)既是奇函數(shù)又是周期函數(shù),周期為3,且x∈[0,1]時(shí),f(x)=x2-x+2,求f(-2014)的值.
考點(diǎn):函數(shù)的周期性,函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)f(x)的周期為3,求出f(-2014)=f(-1),再由函數(shù)f(x)是奇函數(shù),能求出結(jié)果.
解答: 解:∵函數(shù)f(x)的周期為3,
∴f(-2014)=f(-671×3-1)=f(-1),
∵函數(shù)f(x)是奇函數(shù),
∴f(-1)=-f(1)=-(12-1+2)=-2,
∴f(-2014)=-2.
點(diǎn)評(píng):本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)的周期性和奇偶性的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四面體的外接球和內(nèi)切球的半徑的關(guān)系是(  )
A、R=
7
2
r
B、R=
5
2
r
C、R=2r
D、R=3r

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an=3-2Sn(n∈N*).
(Ⅰ)求a1,a2,a3,a4的值并猜想an的表達(dá)式.
(Ⅱ)若猜想的結(jié)論正確,用三段論證明證明數(shù)列{an}是等比數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求二次函數(shù)f(x)=x2-4x-1在區(qū)間[t,t+2]上的最小值g(t),其中t∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

π
2
0
sin2
x
2
dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[
π
2
,
3
2
π]
(Ⅰ)求|
a
+
b
|的取值范圍;
(Ⅱ)求函數(shù)f(x)=
a
b
-|
a
+
b
|的最小值,并求此時(shí)x的值;
(Ⅲ)若|k
a
+
b
|=
3
|
a
-k
b
|,其中k>0,求
a
b
的最小值,并求此時(shí)
a
b
的夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和記為Sn,已知有a1=1,a3=5
(1)求通項(xiàng)an;
(2)若Sn=400,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2mx2-2(4-m)x+1,g(x)=mx
(1)函數(shù)f(x)在x∈[-1,+∞)上單調(diào)遞減,求m的范圍;
(2)若對(duì)于任一實(shí)數(shù)x,f(x)與g(x)至少有一個(gè)為正數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直四棱柱ABCD-A1B1C1D1中,已知底面ABCD是邊長(zhǎng)為1的正方形,側(cè)棱C1C垂直于底面ABCD,且C1C=2,點(diǎn)P是側(cè)棱C1C的中點(diǎn).
(1)求證:AC1∥平面PBD;
(2)求證:A1P⊥平面PBD;
(3)求三棱錐A1-BDC1的體積V.

查看答案和解析>>

同步練習(xí)冊(cè)答案