A. | 圖象關(guān)于點(diǎn)$({-\frac{π}{3},0})$中心對(duì)稱 | B. | 圖象關(guān)于$x=-\frac{π}{6}$軸對(duì)稱 | ||
C. | 在區(qū)間$[{-\frac{5π}{12},-\frac{π}{6}}]$上單調(diào)遞增 | D. | 在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞減 |
分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得g(x)的解析式,再利用正弦函數(shù)的單調(diào)性,得出結(jié)論.
解答 解:∵函數(shù)f(x)=sinωx(ω>0)的圖象與直線y=1的相鄰交點(diǎn)之間的距離為π,∴T=$\frac{2π}{ω}$=π,∴ω=2.
f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位后,得到函數(shù)y=g(x)=sin2(x+$\frac{π}{6}$)=sin(2x+$\frac{π}{3}$)的圖象.
當(dāng)x∈$[{-\frac{5π}{12},-\frac{π}{6}}]$時(shí),2x+$\frac{π}{3}$∈[-$\frac{π}{2}$,0],故g(x)在區(qū)間$[{-\frac{5π}{12},-\frac{π}{6}}]$上單調(diào)遞增,
故選:C.
點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5n-4 | B. | 4n-3 | C. | 3n-2 | D. | 2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2i | B. | -2i | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=ex | B. | y=-x | C. | y=lgx | D. | y=|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\{x|-\frac{1}{2}<x≤1\}$ | B. | {x|-1≤x<2} | C. | {x|x<2} | D. | {x|1≤x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com