已知b≠0,用公式法解方程ax2+bx+c=0,并要求輸出它的實(shí)根.

思路分析:輸入三個(gè)實(shí)數(shù)a,b,c,先判斷a是否為零,若不為零,則通過(guò)判斷判別式來(lái)求實(shí)根.

程序框圖如圖1-2-12所示.

圖1-2-12

程序步驟如下:

input  a,b,c

d=b^2-4*a*c;

p=-b/(2*a);

q=sqrt(ABS(d))/(2*a);

if  a=0

print(%io(2),“yuan fang cheng bu shi yi yuan er ci fang cheng”);

x=-c/b;

print(%io(2),x);

else

if  d>=0 

x1=p+q;

x2=p-q;

print(%io(2),x1,x2);

  else

print(%io(2),“yuan fang cheng wu shi gen”);

    end

    end

點(diǎn)評(píng):①當(dāng)a=0時(shí),輸出“不是一元二次方程”;②當(dāng)b2-4ac>0時(shí),求得并輸出兩個(gè)不相等實(shí)根;③當(dāng)b2-4ac=0時(shí),求得并輸出兩個(gè)相等實(shí)根;④當(dāng)b2-4ac<0時(shí),輸出“無(wú)實(shí)數(shù)根”.由于需要分情況討論,故采用條件結(jié)構(gòu)畫(huà)出流程圖,應(yīng)用條件語(yǔ)句寫(xiě)出程序.本例在前例的基礎(chǔ)上加了條件,需要判斷a是否為零.例6、例7這兩個(gè)題放在一起對(duì)于鍛煉我們的思維能力很有好處,兩個(gè)題目的巧妙之處在于一個(gè)告訴了是一元二次方程,而另一個(gè)需要判斷是否為一元二次方程,這一點(diǎn)正是我們?nèi)菀缀雎缘牡胤?

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)定義在[p,q]上的一個(gè)函數(shù)m(x),用分法T:p=x0<x1<…<xi<…<xn=q將區(qū)間[p,q]任意劃分成n個(gè)小區(qū)間,如果存在一個(gè)常數(shù)M>0,使得和式
n
i=1
|m(xi)-m(xi-1)|≤M
恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試判斷函數(shù)f(x)是否為在[1,3]上的有界變差函數(shù)?若是,求M的最小值;若不是,請(qǐng)說(shuō)明理由.(參考公式:
n
i=1
f(x)=f(x1)+f(x2)+
…+f(xn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

已知b≠0,用公式法解方程ax2+bx+c=0,并要求輸出它的實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市邛崍市高三(上)12月統(tǒng)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)定義在[p,q]上的一個(gè)函數(shù)m(x),用分法T:p=x<x1<…<xi<…<xn=q將區(qū)間[p,q]任意劃分成n個(gè)小區(qū)間,如果存在一個(gè)常數(shù)M>0,使得和式恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試判斷函數(shù)f(x)是否為在[1,3]上的有界變差函數(shù)?若是,求M的最小值;若不是,請(qǐng)說(shuō)明理由.(參考公式:…+f(xn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省煙臺(tái)市牟平區(qū)高三(上)模塊檢測(cè)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)定義在[p,q]上的一個(gè)函數(shù)m(x),用分法T:p=x<x1<…<xi<…<xn=q將區(qū)間[p,q]任意劃分成n個(gè)小區(qū)間,如果存在一個(gè)常數(shù)M>0,使得和式恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試判斷函數(shù)f(x)是否為在[1,3]上的有界變差函數(shù)?若是,求M的最小值;若不是,請(qǐng)說(shuō)明理由.(參考公式:…+f(xn))

查看答案和解析>>

同步練習(xí)冊(cè)答案