橢圓
x2
m
+
y2
6
=1
的焦距為2,則m的取值是( 。
A、7B、5C、5或7D、10
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:直接利用橢圓的簡(jiǎn)單性質(zhì)求解.
解答: 解:∵橢圓
x2
m
+
y2
6
=1
的焦距為2,
∴若橢圓的焦點(diǎn)在x軸上,則m-6=(
2
2
2,解得m=7;
若橢圓的焦點(diǎn)在y軸上,則6-m=(
2
2
2,解得m=5.
故選:C.
點(diǎn)評(píng):本題考查橢圓中參數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分類(lèi)討論思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三個(gè)正數(shù)a,b,c滿(mǎn)足a≤b+c≤2a,b≤a+c≤2b,則
b
a
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線(xiàn)
y2
4
-
x2
2
=1
的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足:當(dāng)n∈(
(k-1)k
2
,
k(k+1)
2
](n,k∈N*)時(shí),an=(-1)k+1•k,Sn是數(shù)列{an} 的前n項(xiàng)和,定義集合Tn={n|Sn是an的整數(shù)倍,n,m∈N*,且1≤n≤m},Card(A)表示集合A中元素的個(gè)數(shù),則Card(T15)=
 
,Card(T2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,已知集合A={x|x≥1},B={x|(x+2)(x-1)<0},則( 。
A、A∪B=U
B、A∩B=∅
C、∁UB⊆A
D、∁UA⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)AB是橢圓的長(zhǎng)軸,點(diǎn)C在橢圓上,且∠CBA=
π
4
.若AB=4,BC=
2
,則橢圓的焦距為( 。
A、
3
3
B、
2
6
3
C、
4
6
3
D、
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“|x|≥2”是“x>3”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-3x-4>0},B={x|x>7,或x<-1},則A∩(∁RB)為( 。
A、(4,7]
B、[-7,-1)
C、(-∞,-1)∪(7,+∞)
D、[-1,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面上,畫(huà)出下列不等式組
x-1≥0
x-y-3≤0
2x+y-2≤0
表示的區(qū)域,若點(diǎn)M(x,y)是上述區(qū)域內(nèi)的點(diǎn),計(jì)算:
(1)b=x+y;    
(2)b=
y
x
;  
(3)b=x2+y2;指出b的最大值與最小值,并指出b最大,最小時(shí)相應(yīng)的點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案