一幾何體的直觀圖如圖所示:
(1)畫出該幾何體的三視圖.
(2)求該幾何體的表面積與體積.
考點(diǎn):簡單空間圖形的三視圖,由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:(1)幾何體的上面是一個圓柱,下面是一個四棱柱,由此能作出它的三視圖.
(2)利用圓柱、四棱柱的表面積與體積,可得該幾何體的表面積與體積.
解答: 解:(1)該幾何體的上面是一個圓柱,下面是一個四棱柱,其三視圖如圖所示.

(2)表面積S=2(8×8+8×4+8×4)+4π×8=32π+256,
體積V=8×8×4+π×22×8=32π+256.
點(diǎn)評:本題考查幾何體的三視圖的求法,解題時要認(rèn)真審題,注意熟練掌握基本概念.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
log2(3x-2)
的定義域?yàn)榧螦,不等式
1
2-x
≥1的解集為B.
(1)求(∁RA)∩B
(2)記A∪B=C,若集合M={x∈R||x-a|<4}滿足M∩C=ϕ,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,MA⊥平面ABCD,MA∥PB,PB=AB=2MA=2.
(1)求證:DM∥面PBC;
(2)求證:面PBD⊥面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程
x2
4-t
+
y2
t-1
=1表示曲線C,給出以下命題:
①曲線C不可能為圓;             
②若曲線C為雙曲線,則t<1或t>4;
③若1<t<4,則曲線C為橢圓;   
④若曲線C為焦點(diǎn)在x軸上的橢圓,則1<t<
5
2

其中真命題的序號是
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F(0,1),一動圓過點(diǎn)F且與圓x2+(y+1)2=8內(nèi)切.
(Ⅰ)求動圓圓心的軌跡C的方程;
(Ⅱ)設(shè)點(diǎn)A(a,0),點(diǎn)P為曲線C上任一點(diǎn),求點(diǎn)A到點(diǎn)P距離的最大值d(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

福建省第14屆運(yùn)動會在媽祖故里莆田舉行,在開幕式表演“籃球操”的訓(xùn)練中我校A、B、C三個同學(xué)一組進(jìn)行傳球訓(xùn)練,每個同學(xué)傳給另外兩個中的某一個的可能性都相同
(Ⅰ)列出從A開始3次傳球的所有路徑(用A、B、C表示);
(Ⅱ)求從起A開始3次傳球后,籃球停在A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,小圓圈表示網(wǎng)絡(luò)的接點(diǎn),接點(diǎn)之間的連接表示它們有網(wǎng)線相連.相連標(biāo)注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量.現(xiàn)在從接點(diǎn)A向接點(diǎn)B傳遞信息,信息可以分開沿不同線路同時傳遞,則單位時間內(nèi)從接點(diǎn)A向接點(diǎn)B傳遞的最大信息量為( 。
A、11B、10C、8D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2-a2x+m(a>0)
(1)若a=1時函數(shù)f(x)有三個互不相同的零點(diǎn),求實(shí)數(shù)m的取值范圍;
(2)若對任意的a∈[3,6],x∈[-2,2],不等式f(x)≤1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log3x,x>0
3x,x≤0
,且關(guān)于x的方程f(x)+x+3a=0有兩個實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案