精英家教網 > 高中數學 > 題目詳情

如圖,在三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1=2,D為AB的中點,且CD⊥DA1

(1)求證:BB1⊥平面ABC;

(2)求三棱錐B1-A1DC的體積.

答案:
解析:

  解:(1)∵AC=BC,D為AB的中點,∴CD⊥AB,又∵CD⊥DA1,∴CD⊥平面ABB1A1,∴CD⊥BB1,

  又BB1⊥AB,AB∩CD=D,∴BB1⊥平面ABC 6分

  (2)由(1)知CD⊥平面AA1B1B,故CD是三棱錐C-A1B1D的高,

  如下圖

  在Rt△ACB中,AC=BC=2,∴AB=2,CD=,

  又BB1=2,∴V三棱B1-A1DC=V三棱-A1C1

 。·CD

 。A1B1×B1B×CD=×2×2×.……12分


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱柱ABC-A'B'C'中,若E、F分別為AB、AC的中點,平面EB'C'F將三棱柱分成體積為V1、V2的兩部分,那么V1:V2為( 。
A、3:2B、7:5C、8:5D、9:5

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AC=2,BC=1,AB=
5
,則此三棱柱的側視圖的面積為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,四邊形A1ABB1為菱形,∠A1AB=60°,四邊形BCC1B1為矩形,若AB⊥BC且AB=4,BC=3
(1)求證:平面A1CB⊥平面ACB1;
(2)求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•通州區(qū)一模)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,AB=2
2
,CC1=4,M是棱CC1上一點.
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若N是AB上一點,且
AN
AB
=
CM
CC1
,求證:CN∥平面AB1M;
(Ⅲ)若CM=
5
2
,求二面角A-MB1-C的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC⊥BC,E分別在線段B1C1上,B1E=3EC1,AC=BC=CC1=4.
(1)求證:BC⊥AC1
(2)試探究:在AC上是否存在點F,滿足EF∥平面A1ABB1,若存在,請指出點F的位置,并給出證明;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案