已知函數(shù)的導數(shù)為實數(shù),.

(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求、的值;

(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點且與曲線相切的直線的方程;

(Ⅲ)設函數(shù),試判斷函數(shù)的極值點個數(shù).

(Ⅰ), 

      (Ⅱ)切線的方程為

      (Ⅲ)函數(shù)有兩個極值點


解析:

(Ⅰ)由已知得,, 由,得,

,,∴ 當時,遞增;當時,, 遞減.∴ 在區(qū)間上的最大值為,∴

,,∴

由題意得,即,得. 故為所求.                       

(Ⅱ)解:由(1)得,,點在曲線上.

⑴ 當切點為時,切線的斜率,

的方程為,即

⑵當切點不是切點時,設切點為,切線的斜率,

的方程為 .又點上,∴

,∴ ,

,即,∴. ∴ 切線的方程為

故所求切線的方程為

(Ⅲ)解:

.  

二次函數(shù)的判別式為

,令,

得:,得  

,,∴當時,,函數(shù)為單調(diào)遞增,極值點個數(shù)為0;

時,此時方程有兩個不相等的實數(shù)根,根據(jù)極值點的定義,

可知函數(shù)有兩個極值點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年潮州市二模理)(14分)已知函數(shù)的導數(shù)滿足,常數(shù)為方程的實數(shù)根.

⑴ 若函數(shù)的定義域為I,對任意,存在,使等式=成立,

 求證:方程不存在異于的實數(shù)根;

⑵ 求證:當時,總有成立;

⑶ 對任意,若滿足,求證

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河北省高三第十次模擬考試理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)的導數(shù)為實數(shù),.

(Ⅰ)若在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;

(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點且與曲線相切的直線的方程;

(Ⅲ)設函數(shù),試判斷函數(shù)的極值點個數(shù)。

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)的導數(shù)為實數(shù),.

(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求、的值;

(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點且與曲線相切的直線的方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)的導數(shù)為實數(shù),.(Ⅰ)若在區(qū)間上的最小值、最大值分別為、1,求、的值;(Ⅱ)在(Ⅰ)

的條件下,求經(jīng)過點且與曲線相切的直線的方程;

(Ⅲ)設函數(shù),試判斷函數(shù)的極值點個數(shù).

查看答案和解析>>

同步練習冊答案