分析 (1)由已知條件利用分數(shù)指數(shù)冪的性質(zhì)和運算法則能證明S(2x)=2S(x)C(x).
(2)由已知條件利用分數(shù)指數(shù)冪的性質(zhì)和運算法則能證明S(x+y)=S(x)C(y)+S(y)C(x).
解答 證明:(1)∵a>0,定義函數(shù)C(x)=$\frac{{a}^{x}+{a}^{-x}}{2}$,S(x)=$\frac{{a}^{x}-{a}^{-x}}{2}$,
∴S(2x)=$\frac{{a}^{2x}-{a}^{-2x}}{2}$=$\frac{({a}^{x}+{a}^{-x})({a}^{x}-{a}^{-x})}{2}$
=2×$\frac{{a}^{x}+{a}^{-x}}{2}$×$\frac{{a}^{x}-{a}^{-x}}{2}$=2S(x)C(x),
∴S(2x)=2S(x)C(x).
(2)S(x+y)=$\frac{{a}^{x+y}-{a}^{-x-y}}{2}$,
S(x)C(y)+S(y)C(x)=$\frac{{a}^{x}-{a}^{-x}}{2}×\frac{{a}^{y}+{a}^{-y}}{2}$+$\frac{{a}^{y}-{a}^{-y}}{2}×\frac{{a}^{x}+{a}^{-x}}{2}$
=$\frac{{a}^{x+y}-{a}^{-x+y}+{a}^{x-y}-{a}^{-x-y}}{4}$+$\frac{{a}^{x+y}-{a}^{-x+y}+{a}^{y-x}-{a}^{-x-y}}{4}$=$\frac{{a}^{x+y}-{a}^{-x-y}}{2}$.
∴S(x+y)=S(x)C(y)+S(y)C(x).
點評 本題考查等式的證明,是基礎(chǔ)題,解題時要認真審題,注意有理數(shù)指數(shù)冪的性質(zhì)和運算法則的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-5) | B. | (-∞,-3) | C. | (-3,+∞) | D. | (-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com