已知定義在R上的函數(shù)f(x)的圖象關(guān)于點(diǎn)(-
3
4
,0)
對(duì)稱,且滿足f(x)=-f(x+
3
2
)
,又f(-1)=1,f(0)=-2,則f(1)+f(2)+f(3)+…+f(2008)=
1
1
分析:首先由函數(shù)且滿足f(x)=-f(x+
3
2
)
,又f(-1)=1,f(0)=-2,可以分析得f(x)=f(x+3)即可求出f(2)和f(3).又函數(shù)f(x)的圖象關(guān)于點(diǎn)(-
3
4
,0)
對(duì)稱,又可推出f(-1)=f(1),綜合考慮幾個(gè)周期關(guān)系條件即可得到f(1)+f(2)+f(3)+…+f(2008)的值.
解答:解:因?yàn)楹瘮?shù)f(x)滿足f(x)=-f(x+
3
2
)
,則f(x)=f(x+3)
又f(-1)=1,f(0)=-2,則f(-1)=f(-1+3)=f(2),又f(0)=f(0+3)=f(3).
又函數(shù)f(x)的圖象關(guān)于點(diǎn)(-
3
4
,0)
對(duì)稱,
f(-1)=f(-
1
2
)=f(-
1
2
+
2
3
)=f(1)所以f(1)+f(2)+f(3)=0.
又f(1+3)=f(4),f(2+3)=f(5),f(3+3)=f(6)…又
2008
3
= 669+1

所以f(1)+f(2)+f(3)+…+f(2008)=f(1)=f(-1)=1
故答案為1.
點(diǎn)評(píng):此題主要考查函數(shù)的周期性問題,其中應(yīng)用到函數(shù)關(guān)于點(diǎn)對(duì)稱的性質(zhì),對(duì)于函數(shù)周期性這個(gè)考點(diǎn)考查的時(shí)候多和奇偶性,對(duì)稱性問題綜合考慮,技巧性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足下列條件:
①對(duì)任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數(shù),
則下列不等式中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0

②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時(shí)f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)是偶函數(shù),對(duì)x∈R都有f(2+x)=f(2-x),當(dāng)f(-3)=-2時(shí),f(2013)的值為( 。
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),對(duì)任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數(shù)y=f(x+1)的圖象關(guān)于直線x=-1對(duì)稱,則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習(xí)冊(cè)答案