過(guò)雙曲線(xiàn)E:
x2
a2
-
y2
b2
=1
(b>a>0)的左頂點(diǎn)A作斜率為1的直線(xiàn)l,若l與雙曲線(xiàn)E的兩條漸近線(xiàn)相交于B,C兩點(diǎn),且|AB|=|BC|,則雙曲線(xiàn)E的離心率為
10
10
分析:先根據(jù)條件求出直線(xiàn)l的方程,聯(lián)立直線(xiàn)方程與漸近線(xiàn)方程分別求出點(diǎn)B,C的橫坐標(biāo),結(jié)合B為AC的中點(diǎn)求出b,a間的關(guān)系,進(jìn)而求出雙曲線(xiàn)的離心率.
解答:解:由題得:雙曲線(xiàn):的左頂點(diǎn)A(a,0)
所以所作斜率為1的直線(xiàn)l:y=x+a,
若l與雙曲線(xiàn)M的兩條漸近線(xiàn)分別相交于點(diǎn)B(x1,y1),C(x2,y2).
聯(lián)立其中一條漸近線(xiàn)y=-
b
a
x,則
y=x+a
y=-
b
a
x
,解得x1=
a2
-a-b
①;
同理聯(lián)立
y=x+a
y=
b
a
x
,解得x2=
a2
b-a
  ②;
又因?yàn)閨AB|=|BC|,
故B是A,C的中點(diǎn),
∴x1=
x2+a
2
⇒2x1=x2+a,
把①②代入整理得:b=3a,
∴e=
c
a
=
a2+b2
a
=
10
a
a
=
10

故答案為;  
10
點(diǎn)評(píng):本題考題雙曲線(xiàn)性質(zhì)的綜合運(yùn)用,解題過(guò)程中要注意由|AB|=|BC|得到B是A,C的中點(diǎn)這以結(jié)論的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知雙曲線(xiàn)E:
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點(diǎn)分別為
F1(-c,0)、F2(c,0),點(diǎn)A(c,b),B(0,b),O為坐標(biāo)原點(diǎn),直線(xiàn)OA與直線(xiàn)F2B的交點(diǎn)在雙曲線(xiàn)E上.
(1)求雙曲線(xiàn)E的離心率;
(2)設(shè)直線(xiàn)F1A與雙曲線(xiàn)E 交于M、N兩點(diǎn),
F1M
MA
,
F1N
NA
,若λ+μ=4,求雙曲線(xiàn)E的方程.
(3)在(2)的條件下,過(guò)點(diǎn)B的直線(xiàn)與雙曲線(xiàn)E相交于不同的兩點(diǎn)P、Q,求
BP
BQ
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P(x0,y0)(x0≠±a)是雙曲線(xiàn)E:
x2
a2
-
y2
b2
=1(a>0,b>0)
上一點(diǎn),M,N分別是雙曲線(xiàn)E的左右頂點(diǎn),直線(xiàn)PM,PN的斜率之積為
1
5

(1)求雙曲線(xiàn)的離心率;
(2)過(guò)雙曲線(xiàn)E的右焦點(diǎn)且斜率為1的直線(xiàn)交雙曲線(xiàn)于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),C為雙曲線(xiàn)上一點(diǎn),滿(mǎn)足
OC
OA
+
OB
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•武漢模擬)過(guò)雙曲線(xiàn)C:
x2
a2
-
y2
b2
=1
的右焦點(diǎn)F的直線(xiàn)l與雙曲線(xiàn)右支相交于A、B兩點(diǎn),以線(xiàn)段AB為直徑的圓被右準(zhǔn)線(xiàn)截得的劣弧的弧度數(shù)為
π
2
,那么雙曲線(xiàn)的離心率e=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,雙曲線(xiàn)E:
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點(diǎn)為A,過(guò)雙曲線(xiàn)E的右焦點(diǎn)F作與實(shí)軸垂直的直線(xiàn)交雙曲線(xiàn)E于B,C兩點(diǎn),若△ABC為直角三角形,則雙曲線(xiàn)E的離心率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案