4、若數(shù)列{an}的前n項和Sn=3n+1-a,那么要使{an}為等比數(shù)列,實數(shù)a的值為(  )
分析:根據(jù)前n項和分別求得a1,a2,a3,再根據(jù)等比中項的性質(zhì)求得a.
解答:解:a1=S1=9-a,a2=S2-a1=18,a3=Sn-a1-a2=54
要使{an}為等比數(shù)列,則a22=a3a1
即324=(9-a)54整理得a=3
故答案為:3
點評:本題主要考查等比數(shù)列的關(guān)系的確定,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n∈N*)都在函數(shù)y=log
12
x
的圖象上.
(Ⅰ)若數(shù)列{bn}是等差數(shù)列,求證數(shù)列{an}為等比數(shù)列;
(Ⅱ)若數(shù)列{an}的前n項和為Sn=1-2-n,過點Pn,Pn+1的直線與兩坐標(biāo)軸所圍成三角形面積為cn,求使cn≤t對n∈N*恒成立的實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下有四種說法:
(1)若p∨q為真,p∧q為假,則p與q必為一真一假;
(2)若數(shù)列{an}的前n項和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*;
(3)若f′(x0)=0,則f(x)在x=x0處取得極值;
(4)由變量x和y的數(shù)據(jù)得到其回歸直線方程l: 
y
=bx+a
,則l一定經(jīng)過點P(
.
x
, 
.
y
)

以上四種說法,其中正確說法的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項和為Sn,則下列命題:
(1)若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}也是遞增數(shù)列;
(2)數(shù)列{Sn}是遞增數(shù)列的充要條件是數(shù)列{an}的各項均為正數(shù);
(3)若{an}是等差數(shù)列(公差d≠0),則S1•S2…Sk=0的充要條件是a1•a2…ak=0.
(4)若{an}是等比數(shù)列,則S1•S2…Sk=0(k≥2,k∈N)的充要條件是an+an+1=0.
其中,正確命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項和為Sn,且有4Sn=an2+4n-1,n∈N*,
(1)求a1的值;
(2)求證:(an-2)2-an-12=0(n≥2);
(3)求出所有滿足條件的數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(x,y)是區(qū)域
x+2y≤2n
x≥0
y≥0
,(n∈N*)內(nèi)的點,目標(biāo)函數(shù)z=x+y,z的最大值記作zn.若數(shù)列{an}的前n項和為Sn,a1=1,且點(Sn,an)在直線zn=x+y上.
(Ⅰ)證明:數(shù)列{an-2}為等比數(shù)列;
(Ⅱ)求數(shù)列{Sn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案