若二次函數(shù)f(x)=x2-3x+m(-1≤x≤3)的最大值為2,求m的值.
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次函數(shù)的解析式,確定函數(shù)的對稱軸和圖象的開口方向,根據(jù)離對稱軸軸越遠(yuǎn),對應(yīng)的函數(shù)值越大,即可求得答案.
解答: 解:∵二次函數(shù)f(x)=x2-3x+m(-1≤x≤3),
∴y=(x-
3
2
2-
9
4
+m
,
對稱軸為x=-
3
2
∉[-1,3],圖象是開口向上的拋物線,
∵離對稱軸越遠(yuǎn),其對應(yīng)的函數(shù)值越大,
又∵x∈[-1,3],
∴當(dāng)x=3時,函數(shù)取得最大值為m=2,
所求m的值為2.
點(diǎn)評:本題考查了二次函數(shù)的性質(zhì)以及求函數(shù)的最值問題.對于二次函數(shù)的最值,一般要注意考慮開口方向和對稱軸與區(qū)間的位置關(guān)系,用離對稱軸的遠(yuǎn)近來判斷哪一個值取得最大值和最小值.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f1(x)=
2
1+x
,定義fn+1(x)=f1[fn(x)],an=
fn(0)-1
fn(0)+2
,其中n∈N*
(Ⅰ)求a1,a2的值,并求證:數(shù)列{an}是等比數(shù)列;
(Ⅱ)若T2n=a1+2a2+3a3+…+2na2n,Qn=
4n2+n
4n2+4n+1
,其中n∈N*,試比較9T2n與Qn大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2loga(x+2)+log 
1
a
(x2+4x)(a>0,a≠1),試討論函數(shù)在區(qū)間(1,+∞)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為正實(shí)數(shù),函數(shù)f(x)=ax3-
3
2
(a+2)x2+6x-3
(1)當(dāng)a=1時,求函數(shù)f(x)的極小值;
(2)試討論曲線y=f(x)與x軸的公共點(diǎn)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S5=25,且S1,S2,S4成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)bn=
1
Sn
(n∈N*),證明:對一切正整數(shù)n,有b1+b2+…+bn
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2013年,國務(wù)院常務(wù)會議五項(xiàng)加強(qiáng)房地產(chǎn)調(diào)控的政策措施,俗稱“國五條”.以下是對?谑泄ば诫A層關(guān)于“國五條”態(tài)度進(jìn)行的調(diào)查數(shù)據(jù),隨機(jī)抽取了50人,他們月收入的頻數(shù)分布情況及對“國五條”贊成的人數(shù)如下表所示:
 月收入(單位:百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
 頻數(shù) 5 10 15 10 5 5
 贊成人數(shù) 4 8 12 5 2 1
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表并回答是否有99%的把握認(rèn)為月收入以5500元為分界點(diǎn)對“國五條”的態(tài)度有差異;
月收入不低于5500元的人數(shù)月收入低于5500元的人數(shù)合計(jì)
贊成a=c=
不贊成b=d=
合計(jì)
參考公式:k2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
P(K2≥k)0.500.400.500.500.500.500.500.500.500.50
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
(Ⅱ)若對月收入在[15,25),[25,35)內(nèi)的被調(diào)查人員中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中不贊成“國五條”的人數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面內(nèi),設(shè)A,B,O為定點(diǎn),P為動點(diǎn),則下列集合分別表示什么圖形:
(1){P|PA=PB};
(2){P|PO=1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
6
)-cos2x-
1
2
cos2x+
1
2

(Ⅰ)求函數(shù)f(x)的最小正周期和在區(qū)間[0,
π
2
]上的取值范圍;
(Ⅱ)△ABC中,設(shè)角A,B,C所對的邊分別為a,b,c,若f(B)=1,a+c=4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1-x2,x≤1
x2+x-2,x>1
,則f(4)的值為
 

查看答案和解析>>

同步練習(xí)冊答案