設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,a2=2,且a2,a3,a5成等比數(shù)列,若{an}的前n項(xiàng)和為Sn,則S20等于(  )
A、342B、380
C、400D、420
考點(diǎn):等比數(shù)列的通項(xiàng)公式,等差數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:由等比中項(xiàng)的性質(zhì)列出方程,由等差數(shù)列的通項(xiàng)公式列出關(guān)于d的方程,由題意求出d,代入通項(xiàng)公式、前n項(xiàng)和公式化簡,再求出S20
解答: 解:因?yàn)閍2,a3,a5成等比數(shù)列,所以
a
2
3
=a2•a5,
設(shè)公差為d,則(2+d)2=2•(2+3d),
即d(d-2)=0,又公差不為0,所以d=2.
故an=2+(n-2)×2=2n-2,Sn=
n(0+2n-2)
2
=n(n-1),
所以S20=19×20=380.
故答案為:B.
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式,以及等比中項(xiàng)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的圖象是[-2,2]上連續(xù)不斷的曲線,且滿足2014f(-x)=
1
2014f(x)
,且在[0,2]上是增函數(shù),若f(log2m)<f[log4(m+2)]成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記min{a,b}為a,b兩個(gè)數(shù)的較小者,max{a,b}為a,b兩個(gè)數(shù)的較大者,f(x)=
1,x≥0
-1,x<0
a+b-(a-b)•f(a-b)
2
的值為( 。
A、min{a,b}B、max{a,b}
C、bD、a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若已知某火箭的起飛重量M是箭體(包括搭載的飛行器)的重量m和燃料重量x之和,在不考慮空氣阻力的條件下,假設(shè)火箭的最大速度y關(guān)于x的函數(shù)關(guān)系式為y=k[ln(m+x)-ln(
2
m)]+5ln 2(其中k≠0).當(dāng)燃料重量為(
e
-1)m噸(e為自然對(duì)數(shù)的底數(shù),e≈2.72)時(shí),該火箭的最大速度為5千米/秒.
(1)求火箭的最大速度y(千米/秒)與燃料重量x(噸)之間的關(guān)系式y(tǒng)=f(x);
(2)已知該火箭的起飛重量是816噸,則應(yīng)裝載多少噸燃料,才能使該火箭的最大飛行速度達(dá)到10千米/秒,順利地把衛(wèi)星發(fā)送到預(yù)定的軌道?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)紙盒中裝有70個(gè)乒乓球,編號(hào)依次為1,2,3,…,70,現(xiàn)用系統(tǒng)抽樣的方法抽取一個(gè)容量為5的樣本,已知抽取球的編號(hào)為6,20,48,62,那么還有一個(gè)球的編號(hào)應(yīng)為( 。
A、16B、28C、34D、36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求曲線y=x6在點(diǎn)(1,1)處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-bx+1.
(1)若a>0,不等式f(x)≥0的解集為A,1∉A,2∈A,求a+b的取值范圍;
(2)若a為整數(shù),b=a+2,且函數(shù)f(x)在(-2,-1)上恰有一個(gè)零點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,橢圓上的點(diǎn)到焦點(diǎn)的最近距離為
3
,其左、右焦點(diǎn)分別為F1、F2,拋物線y2=2px(p>0)的焦點(diǎn)與F2重合.
(1)求橢圓及拋物線的方程;
(2)過F1作拋物線的兩條切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax-2-3的圖象恒過定點(diǎn)
 

查看答案和解析>>

同步練習(xí)冊(cè)答案