分析 由余弦定理可求a,c的值,利用同角三角函數(shù)關(guān)系式可求sinB的值,根據(jù)三角形面積公式即可得解.
解答 解:在△ABC中,∵c=2a,b=4,$cosB=\frac{1}{4}$,
∴由余弦定理可得:b2=a2+c2-2accosB,可得:16=a2+4a2-2a$•2a•\frac{1}{4}$,解得:a2=4,
∴a=2,c=4,
∵$cosB=\frac{1}{4}$,0<B<π,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{15}}{4}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×2×4×$$\frac{\sqrt{15}}{4}$=$\sqrt{15}$.
故答案為:2,4,$\sqrt{15}$.
點(diǎn)評(píng) 本題主要考查了余弦定理,三角形面積公式,同角三角函數(shù)關(guān)系式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 鈍角三角形 | ||
C. | 直角三角形 | D. | 鈍角三角形或直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 16 | C. | -5 | D. | $\frac{16}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=(-1)n$\frac{{2}^{n}+1}{{2}^{n}}$ | B. | an=(-1)n$\frac{2n+1}{{2}^{n}}$ | ||
C. | an=(-1)n+1$\frac{{2}^{n}+1}{{2}^{n}}$ | D. | an=(-1)n+1$\frac{2n+1}{{2}^{n}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 甲先到教室 | B. | 乙先到教室 | ||
C. | 兩人同時(shí)到教室 | D. | 誰先到教室不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com