若集合A1,A2…An滿足A1∪A2∪…∪An=A,則稱(chēng)A1,A2…An為集合A的一種拆分.已知:
①當(dāng)A1∪A2={a1,a2,a3}時(shí),有33種拆分;
②當(dāng)A1∪A2∪A3={a1,a2,a3,a4}時(shí),有74種拆分;
③當(dāng)A1∪A2∪A3∪A4={a1,a2,a3,a4,a5}時(shí),有155種拆分;

由以上結(jié)論,推測(cè)出一般結(jié)論:
當(dāng)A1∪A2∪…An={a1,a2,a3,…an+1}有    種拆分.
【答案】分析:觀察所給的幾個(gè)集合的拆分種數(shù),發(fā)現(xiàn)規(guī)律,由此推測(cè)出一般結(jié)論即可.
解答:解:觀察①當(dāng)A1∪A2={a1,a2,a3}時(shí),有33種拆分;
②當(dāng)A1∪A2∪A3={a1,a2,a3,a4}時(shí),有74種拆分;
③當(dāng)A1∪A2∪A3∪A4={a1,a2,a3,a4,a5}時(shí),有155種拆分;

其中33=(22-1)2+1,74=(23-1)3+1,155=(24-1)4+1,…
由以上結(jié)論,推測(cè)出;當(dāng)A1∪A2∪…An={a1,a2,a3,…an+1}有 (2n-1)n+1種拆分.
故答案為:(2n-1)n+1
點(diǎn)評(píng):本題主要考查了合情推理中的歸納推理,歸納推理的一般步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A1、A2滿足A1∪A2=A,則稱(chēng)(A1,A2)為集合的一種分拆,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時(shí),(A1,A2)與(A2,A1)為集合A的同一種分拆.請(qǐng)回答集合A={1,2,3,}的不同分拆有
27
27
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A1,A2滿足A1∪A2=A,則稱(chēng)(A1,A2)為集合A的一種分拆,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時(shí),(A1,A2)與(A2,A1)為集合A的同一種分拆,則集合A={1,2,3}的不同分拆種數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A1、A2滿足A1∪A2=A,則稱(chēng)(A1,A2)為集合A的一種拆分,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時(shí),(A1,A2)與(A2,A1)為集合A的同一種拆分,則集合A={1,2}的不同拆分的種數(shù)是
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•順義區(qū)二模)給定集合A,若對(duì)于任意a,b∈A,有a+b∈A,且a-b∈A,則稱(chēng)集合A為閉集合,給出如下四個(gè)結(jié)論:
①集合A={-4,-2,0,2,4}為閉集合;  
②集合A={n|n=3k,k∈Z}為閉集合;
③若集合A1,A2為閉集合,則A1∪A2為閉集合;
④若集合A1,A2為閉集合,且A1⊆R,A2⊆R,則存在c∈R,使得c∉(A1∪A2).
其中正確結(jié)論的序號(hào)是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)給定集合A,若對(duì)于任意a,b∈A,有a+b∈A,則稱(chēng)集合A為閉集合,給出如下五個(gè)結(jié)論:
①集合A={-4,-2,0,2,4}為閉集合;
②正整數(shù)集是閉集合;
③集合A={n|n=3k,k∈Z}是閉集合;
④若集合A1,A2為閉集合,則A1∪A2為閉集合;
⑤若集合A1,A2為閉集合,且A1⊆R,A2⊆R,則存在c∈R,使得c∉(A1∪A2).
其中正確的結(jié)論的序號(hào)是
②③⑤
②③⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案