本試題主要是考查了向量的數(shù)量積和解三角形中邊角轉(zhuǎn)換的運用。
(1)根據(jù)兩個向量的坐標(biāo),以及差向量的模長為1,結(jié)合數(shù)量積的性質(zhì)可知得到角B的值。
(2)正弦定理可知sinA,然后又
,∴
,結(jié)合正弦面積公式得到結(jié)論。
解:(1)
--------------------2分
∴
--------------------4分
又B為三角形的內(nèi)角,由
,故
--------------------6分
(2)根據(jù)正弦定理,知
,即
,
∴
,又
,∴
--------------------9分
故C=
,△ABC的面積=
----------------------12分