某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.
(1)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù),以下是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計(jì)表(部分)
乙的頻數(shù)統(tǒng)計(jì)表(部分)
當(dāng)n=2100時(shí),根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合算法要求的可能性較大;
(3)將按程序框圖正確編寫的程序運(yùn)行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.
(1)變量x是在1,2,3,…,24這24個(gè)整中數(shù)隨機(jī)產(chǎn)生的一個(gè)數(shù),共有24種可能.
當(dāng)x從1,3,5,7,9,11,13,15,17,19,21,23這12個(gè)數(shù)中產(chǎn)生時(shí),輸出y的值為1,故P1=;
當(dāng)x從2,4,8,10,14,16,20,22這8個(gè)數(shù)中產(chǎn)生時(shí),輸出y的值為2,故P2=;
當(dāng)x從6,12,18,24這4個(gè)數(shù)中產(chǎn)生時(shí),輸出y的值為3,故P3=.
所以,輸出y的值為1的概率為,輸出y的值為2的概率為,輸出y的值為3的概率為.
(2)當(dāng)n=2100時(shí),甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率如下:
比較頻率趨勢(shì)與概率,可得乙同學(xué)所編程序符合算法要求的可能性大.
(3)隨機(jī)變量ξ可能的取值為0,1,2,3.
P(ξ=0)=C×()0×()3=,
P(ξ=1)=C×()1×()2=,
P(ξ=2)=C×()2×()1=,
P(ξ=3)=C×()3×()0=,
故ξ的分布列為
ξ | 0 | 1 | 2 | 3 |
P |
|
|
|
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在空間直角坐標(biāo)系O-xyz中有8個(gè)點(diǎn):P1(1,1,1)、P2(-1,1,1)、…、P7(-1,-1,-1)、P8(1,-1,-1)(每個(gè)點(diǎn)的橫、縱、豎坐標(biāo)都是1或-1),以其中4個(gè)點(diǎn)為頂點(diǎn)的三棱錐一共有________個(gè)(用數(shù)字作答).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
把一枚硬幣連續(xù)拋兩次,記“第一次出現(xiàn)正面”為事件A,“第二次出現(xiàn)正面”為事件B,則P(B|A)等于( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
一套重要資料鎖在一個(gè)保險(xiǎn)柜中,現(xiàn)有n把鑰匙依次分給n名學(xué)生依次開柜,但其中只有一把真的可以打開柜門,平均來(lái)說(shuō)打開柜門需要試開的次數(shù)為( )
A.1 B.n
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸在y軸的左側(cè),其中a、b、c∈{-3,-2,-1,0,1,2,3},在這些拋物線中,記隨機(jī)變量ξ=“|a-b|的取值”,則ξ的數(shù)學(xué)期望E(ξ)為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)i是虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)是( )
A.+i B.-i
C.-i D.+i
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,當(dāng)實(shí)數(shù)m取何值時(shí).
(1)z是純虛數(shù).
(2)z是實(shí)數(shù).
(3)z對(duì)應(yīng)的點(diǎn)位于復(fù)平面的第二象限.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
用數(shù)學(xué)歸納法證明:12+22+…+n2+…+22+12=,第二步證明由“k到k+1”時(shí),左邊應(yīng)加( )
A.k2 B.(k+1)2
C.k2+(k+1)2+k2 D.(k+1)2+k2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com