A. | 2n2 | B. | n3 | C. | 2n3 | D. | n4 |
分析 利用等差數(shù)列的通項(xiàng)公式與求和公式,可得Sn=(n3+n),再以2n-1代替n,得S2n-1=4n3-6n2+4n-1,結(jié)合和的特點(diǎn)可以求解.
解答 解:由題中數(shù)陣的排列特征,設(shè)第i行的第1個(gè)數(shù)記為ai(i=1,2,3…n)
則a2-a1=1
a3-a2=2
a4-a3=3
…
an-an-1=n-1
以上n-1個(gè)式子相加可得,an-a1=1+2+…+(n-1)=$\frac{1+n-1}{2}$×(n-1)=$\frac{n(n-1)}{2}$,
∴an=$\frac{n(n-1)}{2}$+1
Sn共有n連續(xù)正整數(shù)相加,并且最小加數(shù)為$\frac{n(n-1)}{2}$+1,最大加數(shù)$\frac{n(n+1)}{2}$,
∴Sn=n•×$\frac{n(n+1)}{2}$+$\frac{n(n-1)}{2}$×(-1)=$\frac{1}{2}$(n3+n)
∴S2n-1=$\frac{1}{2}$[(2n-1)3+(2n-1)]=4n3-6n2+4n-1,
∴S1=1
S1+S3=16=24
S1+S3+S5=81=34
∴S1+S3+…+S2n-1=1+15+65+…+4n3-6n2+4n-1=n4.
故選:D
點(diǎn)評(píng) 歸納推理的一般步驟是:(1)通過(guò)觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3或-2 | B. | 2或-3 | C. | $\frac{3}{5}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
X | 0 | 1 | 2 | 3 |
y | -1 | 1 | m | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 1 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com