如圖,在平面直角坐標系中,已知橢圓經過點,橢圓的離心率.
(1)求橢圓的方程;
(2)過點作兩直線與橢圓分別交于相異兩點、.若的平分線與軸平行, 試探究直線的斜率是否為定值?若是, 請給予證明;若不是, 請說明理由.
(1);(2)定值.
【解析】
試題分析:(1)待定系數法求橢圓方程.找到兩個關于的方程即可.(2)因為的平分線與軸平行,所以直線MA,MB的斜率互為相反數.假設直線MA聯(lián)立橢圓方程即可得到A點的坐標,因為M點坐標已知.再把k換成-k即可求出B點的坐標.從而求出AB的斜率即可.本題第一小題屬于常規(guī)題型.第二小題要把握以下三方面:首先是MA,MB的斜率是成相反數,假設了一個另一個也知道.其次A,B的坐標也是只要知道一個另一個只要把k換成-k即可.再次求A,B坐標時M點已經知道,用韋達定理很好求出.
試題解析:(1)由,得,故橢圓方程為,
又橢圓過點,則,解之得,
因此橢圓方程為
(2)設直線的斜率為,,由題,直線MA與MB的斜率互為相反數,直線MB的斜率為,聯(lián)立直線MA與橢圓方程: ,
整理得,由韋達定理,,
,整理可得,
又
所以為定值.
考點:1.待定系數求橢圓方程.2.直線與圓的位置關系.3.韋達定理.4.較復雜的運算.
科目:高中數學 來源: 題型:
OP |
OA |
OB |
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
A、偶函數 | B、奇函數 | C、不是奇函數,也不是偶函數 | D、奇偶性與k有關 |
查看答案和解析>>
科目:高中數學 來源: 題型:
試問:是否存在定點E、F,使|ME|、|MB|、|MF|成等差數列?若存在,求出E、F的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com