分析 變形可得k=$\sqrt{1+\frac{2xy}{{x}^{2}+{y}^{2}}}$,由x2+y2≥2xy可得答案.
解答 解:由題意可得k=$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$=$\sqrt{\frac{(x+y)^{2}}{{x}^{2}+{y}^{2}}}$
=$\sqrt{\frac{{x}^{2}+{y}^{2}+2xy}{{x}^{2}+{y}^{2}}}$=$\sqrt{1+\frac{2xy}{{x}^{2}+{y}^{2}}}$
≤$\sqrt{1+\frac{2xy}{2xy}}$=$\sqrt{2}$,當(dāng)且僅當(dāng)x=y時取等號,
∴k=$\frac{x+y}{\sqrt{{x}^{2}+{y}^{2}}}$的最大值為$\sqrt{2}$
點評 本題考查基本不等式求最值,變形為可用基本不等式的形式是解決問題的關(guān)鍵,屬基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 4 | C. | $2\sqrt{3}$ | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | R | C. | $\{x\left|{-\frac{1}{3}}\right.<x<\frac{1}{2}\}$ | D. | $\{x\left|{x≠\frac{1}{6}}\right.\}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或-2 | B. | 2 | C. | -2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | ($\frac{1}{2}$,+∞) | C. | [$\frac{1}{2}$,+∞) | D. | (-∞,$\frac{1}{2}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com