【題目】如圖,某幾何體中,四邊形是邊長為的正方形, 是直角梯形, 是直角, , 是以為直角頂點的等腰直角三角形, .
(1)求證:平面平面;
(2)求平面與平面所成的銳二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】試題分析: 因為, ,可證平面,從而證明平面平面; 由得到,又因為四邊形為正方形,所以又,以為原點, , , 所在直線分別為軸, 軸, 軸,建立空間直角坐標(biāo)系,求出平面與平面的法向量,將求二面角問題轉(zhuǎn)化為求兩向量夾角。
解析:(1)因為, , , 平面,
所以平面,
又平面,
所以平面平面.
(2)因為平面平面,平面平面,
, 平面,
所以平面.又平面,故.
而四邊形為正方形,所以又,
以為原點, , , 所在直線分別為軸, 軸, 軸,建立空間直角坐標(biāo)系.
依題意易知: , , , , ,
設(shè)平面的一個法向量為,
則,即,令,則,所以.
設(shè)平面的一個法向量為,
則,即,令,則,所以.
設(shè)平面與平面所成的銳二面角的平面角為,
則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線: 經(jīng)過伸縮變換后得到曲線.以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求出曲線、的參數(shù)方程;
(Ⅱ)若、分別是曲線、上的動點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計,可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉(zhuǎn)180°而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)為了達到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時腰的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P–ABCD中,底面ABCD是邊長為6的正方形,PD平面ABCD,PD=8.
(1) 求PB與平面ABCD所成角的大。
(2) 求異面直線PB與DC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①;②這兩個條件中任選-一個,補充在下面問題中,然后解答補充完整的題.
在中,角的對邊分別為,已知 ,.
(1)求;
(2)如圖,為邊上一點,,求的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,長半軸長為短軸長的b倍,A,B分別為橢圓C的上、下頂點,點.
求橢圓C的方程;
若直線MA,MB與橢圓C的另一交點分別為P,Q,證明:直線PQ過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(1)求的單調(diào)區(qū)間和極值;
(2)證明:若存在零點,則在區(qū)間上僅有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每輪游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每輪游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得-200分).設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓是否出現(xiàn)音樂相互獨立.
(1)玩三輪游戲,至少有一輪出現(xiàn)音樂的概率是多少?
(2)設(shè)每輪游戲獲得的分?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com