求函數(shù)f(x)=在R上的極值(a>0).
解:∵(x)=,令(x)=0,得x=0. 此外該函數(shù)定義域?yàn)?B>R,而在x=±a處不可導(dǎo), 因此列表時(shí)應(yīng)將x=±a點(diǎn)考慮進(jìn)去. x變化時(shí),、y的變化情況如下表: 由表知f(x)在x=±a處取得極小值0,在x=0處取得極大值. 思路分析:按照求極值的基本方法,考慮函數(shù)的定義域,先從方程(x)=0求出可能的極值點(diǎn),然后按照函數(shù)極值的定義判斷在這些點(diǎn)處是否取得極值. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:新課程高中數(shù)學(xué)疑難全解 題型:044
設(shè)函數(shù)f(x)=(a∈R),求實(shí)數(shù)a的取值范圍,使f(x)在區(qū)間(0,∞)上是單調(diào)減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河北省正定中學(xué)2010屆高三上學(xué)期第一次月考(數(shù)學(xué)文) 題型:044
函數(shù)f(x)定義在R上且f(x+3)=f(x),當(dāng)≤x≤3時(shí),f(x)=log2(ax2-2x+2),若f(35)=1,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江西省遂川中學(xué)2008屆高三第一次月考數(shù)學(xué)試卷(理) 題型:044
設(shè)y=f(x)是定義在R上的函數(shù),如果存在A點(diǎn),對(duì)函數(shù)y=f(x)的圖像上任意點(diǎn)P,P關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)Q也在函數(shù)y=f(x)的圖像上,則稱(chēng)函數(shù)y=f(x)關(guān)于點(diǎn)A對(duì)稱(chēng),A稱(chēng)為函數(shù)f(x)的一個(gè)對(duì)稱(chēng)點(diǎn).對(duì)于定義在R上的函數(shù)f(x),可以證明點(diǎn)A(a,b)是f(x)圖像的一個(gè)對(duì)稱(chēng)點(diǎn)的充要條件是f(a-x)+f(a+x)=2b,x∈R.
(1)求函數(shù)f(x)=x3+3x2圖像的一個(gè)對(duì)稱(chēng)點(diǎn);
(2)函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江西贛州四所重點(diǎn)中學(xué)高三上學(xué)期期末聯(lián)考理數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=在x=0,x=處存在極值。
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)函數(shù)y=f(x)的圖象上存在兩點(diǎn)A,B使得△AOB是以坐標(biāo)原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在y軸上,求實(shí)數(shù)c的取值范圍;
(Ⅲ)當(dāng)c=e時(shí),討論關(guān)于x的方程f(x)=kx(k∈R)的實(shí)根個(gè)數(shù)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com