【題目】已知命題p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增,命題q:關(guān)于x的不等式mx2+4(m-2)x+4>0的解集為R.若p∨q為真命題,p∧q為假命題,求m的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在區(qū)間[﹣m,m]上的函數(shù)f(x)=log2 是奇函數(shù),且f(﹣ )≠f( ),則nm的范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,垂直于正方形所在的平面,在這個四棱錐的所有表面及面、面中,一定互相垂直的平面有_________對.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an= ,若從{an}中提取一個公比為q的等比數(shù)列{ },其中k1=1,且k1<k2<…<kn , kn∈N* , 則滿足條件的最小q的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=a(x﹣lnx)+ ﹣ ,a∈R.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a= 時,證明:f(x)>f′(x)+ 對于任意的x∈[1,2]成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=sin(x+ )的圖象上各點(diǎn)的橫坐標(biāo)壓縮為原來的 倍(縱坐標(biāo)不變),所得函數(shù)在下面哪個區(qū)間單調(diào)遞增( )
A.(﹣ , )
B.(﹣ , )
C.(﹣ , )
D.(﹣ , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代儒家要求學(xué)生掌握六種基本才藝:禮、樂、射、御、書、數(shù),簡稱“六藝”,某中學(xué)為弘揚(yáng)“六藝”的傳統(tǒng)文化,分別進(jìn)行了主題為“禮、樂、射、御、書、數(shù)”六場傳統(tǒng)文化知識的競賽,現(xiàn)有甲、乙、丙三位選手進(jìn)入了前三名的最后角逐、規(guī)定:每場知識競賽前三名的得分都分別為(,且);選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場比賽中獲得第一名,則下列推理正確的是( )
A. 每場比賽第一名得分為4 B. 甲可能有一場比賽獲得第二名
C. 乙有四場比賽獲得第三名 D. 丙可能有一場比賽獲得第一名
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的切線,ADE是⊙O的割線,AC=AB,連接CD,CE,分別與⊙O交于點(diǎn)F,點(diǎn)G.
(1)求證:△ADC~△ACE;
(2)求證:FG∥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為0的等差數(shù)列的前三項(xiàng)和為6,且成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求使的的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com