(Ⅰ)①證明兩角和的余弦公式C(α+β):cos(α+β)=cosαcosβ-sinαsinβ;
②由C(α+β)推導(dǎo)兩角和的正弦公式S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;
(Ⅱ)已知△ABC的面積,且,求cosC。
(Ⅰ)證明:①如圖,在直角坐標(biāo)系xOy內(nèi)作單位圓O,并作出角α、β與-β,
使角α的始邊為Ox,交⊙O于點(diǎn)P1,終邊交⊙O于點(diǎn)P2;
角β的始邊為OP2,終邊交⊙O于點(diǎn)P3,角-β的始邊為OP1,終邊交⊙于點(diǎn)P4
則P1(1,0),P2(cosα,sinα),,
,
由P1P3=P2P4及兩點(diǎn)間的距離公式,則
,
展開(kāi)并整理,得
,
∴cos(α+β)= cosαcosβ-sinαsinβ;
②由①易得,


,
。
(Ⅱ)解:由題意,設(shè)△ABC的角B、C的對(duì)邊分別為b、c,
,

,
,
,
由題意,得,
,
。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知△ABC的面積S=
1
2
,
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)①證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知cosα=-
4
5
,α∈(π,
3
2
π),tanβ=-
1
3
,β∈(
π
2
,π),cos(α+β)
,求cos(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)證明兩角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
(2)已知△ABC的面積S=
1
2
AB
AC
=3
,且cosB=
3
5
,求cosC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分) 

(Ⅰ)1證明兩角和的余弦公式

      2由推導(dǎo)兩角和的正弦公式.

(Ⅱ)已知,求

查看答案和解析>>

同步練習(xí)冊(cè)答案