如圖,直線l⊥平面α,垂足為O,已知在直角三角形ABC中,BC=1,AC=2,AB=數(shù)學公式.該直角三角形在空間做符合以下條件的自由運動:(1)A∈i,(2)C∈α.則B、O兩點間的最大距離為________.

解:將原問題轉化為平面內(nèi)的最大距離問題解決,
以O為原點,OA為y軸,OC為x軸建立直角坐標系,如圖.
設∠ACO=θ,B(x,y),則有:x=ACcosθ+BCsinθ=2cosθ+sinθ,y=BCcosθ=cosθ.
∴x2+y2=4cos2θ+4sinθcosθ+1=2cos2θ+2sin2θ+3=2sin(θ+)+3,
當sin(θ+)=1時,x2+y2最大,為2+3,
則B、O兩點間的最大距離為1+
故答案為:1+
分析:先將原問題轉化為平面內(nèi)的最大距離問題解決,以O為原點,OA為y軸,OC為x軸建立直角坐標系,B、O兩點間的距離表示處理,結合三角函數(shù)的性質(zhì)求出其最大值即可.
點評:本題考查了點、線、面間的距離計算,解答關鍵是將空間幾何問題轉化為平面幾何問題解決,利用三角函數(shù)的知識求最大值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線l⊥平面α,垂足為O,已知長方體ABCD-A1B1C1D1中,AA1=5,AB=6,AD=8.該長方體做符合以下條件的自由運動:(1)A∈l;(2)C∈α,則C1、O兩點間的最大距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線l⊥平面α,垂足為O,已知△ABC中,∠ABC為直角,AB=2,BC=1,該直角三角形做符合以下條件的自由運動:(1)A∈l,(2)B∈α.則C、O兩點間的最大距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•溫州一模)如圖,直線l⊥平面α,垂足為O,正四面體ABCD的棱長為4,C在平面α內(nèi),B是直線l上的動點,則當O到AD的距離為最大時,正四面體在平面α上的射影面積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黃州區(qū)模擬)如圖,直線l⊥平面α,垂足為O,已知在直角三角形ABC中,BC=1,AC=2,AB=
5
.該直角三角形在空間做符合以下條件的自由運動:(1)A∈l,(2)C∈α.則B、O兩點間的最大距離為
1+
2
1+
2

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省八校高三第二次聯(lián)考理科數(shù)學試卷(解析版) 題型:填空題

如圖,直線l⊥平面,垂足為O,已知在直角三角形ABC中, BC=1,AC=2,AB=該直角三角形在空間做符合以下條件的自由運動:(1),(2).則B、O兩點間的最大距離為           

 

查看答案和解析>>

同步練習冊答案