tan10°tan20°+
3
(tan10°+tan20)
的值是(  )
A、
3
B、1
C、
3
3
D、
6
分析:tan10°+tan20°=tan30°(1-tan10°tan20°) 代入要求的式子化簡即可得到結(jié)果.
解答:解:tan10°tan20°+
3
(tan10°+tan20)
=tan10°tan20°+
3
 tan30°(1-tan10°tan20°)
=tan10°tan20°+1-tan10°tan20°=1,
故選  B.
點評:本題考查兩角和的正切公式的變形應(yīng)用,利用了  tan10°+tan20°=tan30°(1-tan10°tan20°).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列各式的值
(1)(cos
π
12
+sin
π
12
)(cos
π
12
-sin
π
12
)
=
 
;
(2)cos200°cos80°+cos110°cos10°=
 
;
(3)tan10°tan20°+tan20°tan60°+tan60°tan10°=
 

(4)cos
π
7
cos
7
cos
3
7
π
=
 
;
(5)sin20°sin40°sin80°=
 
;
(6)cos20°+cos100°+cos140°=
 

(7)(1+tan1°)(1+tan2°)(1+tan3°)…(1+tan44°)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:“伴你學(xué)”新課程 數(shù)學(xué)·選修1-2(人教B版) 人教B版 題型:044

觀察:

①tan10°tan20°+tan2°·tan60°+tan60°tan10°=1;

②tan5°tan10°+tan10°tan75°+tan75°tan5°=1.

由以上兩式作出從特殊到一般的推廣,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第3章 三角函數(shù)與三角恒等變換):3.5 三角函數(shù)中的求值問題(1)(解析版) 題型:解答題

求下列各式的值
(1)=    ;
(2)cos200°cos80°+cos110°cos10°=    ;
(3)tan10°tan20°+tan20°tan60°+tan60°tan10°=   
(4)=    ;
(5)sin20°sin40°sin80°=   
(6)cos20°+cos100°+cos140°=    ;
(7)(1+tan1°)(1+tan2°)(1+tan3°)…(1+tan44°)=   

查看答案和解析>>

同步練習(xí)冊答案