已知定義在(-1,1)上的奇函數(shù)為減函數(shù),且,則的取值范圍

A.       B.()  

C. ()     D.(

 

【答案】

D

【解析】因為定義在(-1,1)上的奇函數(shù)為減函數(shù),且

,則的取值范圍(),選D.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在[-1,1]上的奇函數(shù)f(x),當(dāng)x∈(0,1]時,f(x)=
2x4x+1

(1)求函數(shù)f(x)在[-1,1]上的解析式;
(2)試用函數(shù)單調(diào)性定義證明:f(x)在(0,1]上是減函數(shù);
(3)要使方程f(x)=x+b,在[-1,1]上恒有實數(shù)解,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•黃岡模擬)已知定義在R上的單調(diào)函數(shù)f(x),存在實數(shù)x0,使得對于任意實數(shù)x1,x2,總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且對于任意正整數(shù)n,有an=
1
f(n)
,bn=f(
1
2n
)+1
,記Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比較
4
3
Sn
與Tn的大小關(guān)系,并給出證明;
(3)在(2)的條件下,若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
對任意不小于2的正整數(shù)n都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足f(2-x)=f(x),f(1)=1,且f(x)在(0,1)上單調(diào),則方程f(x)=|lgx|的實根的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:蚌埠二中2008屆高三12月份月考數(shù)學(xué)試題(理) 題型:044

已知定義在實數(shù)集合R上的奇函數(shù)f(x)有最小正周期為2,且當(dāng)x∈(0,1)時,

(1)求函f(x)在[-1,1]上的解析式;

(2)判斷f(x)在(0,1)上的單調(diào)性;

(3)當(dāng)λ取何值時,方程f(x)=λ在[-1,1]上有實數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省濟(jì)南市2012屆高三上學(xué)期12月月考數(shù)學(xué)試題 題型:044

已知定義在實數(shù)集R上的奇函數(shù)f(x)有最小正周期2,且當(dāng)x∈(0,1)時,f(x)=

(Ⅰ)求函數(shù)f(x)在(-1,1)上的解析式;

(Ⅱ)判斷f(x)在(0,1)上的單調(diào)性;

(Ⅲ)當(dāng)λ取何值時,方程f(x)=λ在(-1,1)上有實數(shù)解?

查看答案和解析>>

同步練習(xí)冊答案