A. | (-∞,-1) | B. | (1,+∞) | C. | (1,4] | D. | (1,3] |
分析 由已知函數(shù)解析式可得導函數(shù)解析式,根據(jù)導函數(shù)不變號,函數(shù)不存在極值點,分別討論a=0和a≠0時,a的取值,綜合討論結(jié)果可得答案.
解答 解:∵f(x)=ax3-2ax2+(a+1)x-log2(a2-1),可得a2-1>0,解得a<-1或a>1,
∴f′(x)=3ax2-4ax+(a+1),
△=16a2-12a(a+1)≤0時,
即1<a≤3時,f′(x)≥0恒成立,f(x)在R上為增函數(shù),滿足條件
綜上,函數(shù)f(x)=ax3-2ax2+(a+1)x不存在極值點的充要條件是1<a≤3.
故選:D.
點評 本題考查的知識點是函數(shù)在某點取得極值的條件,其中a2-1>0這種情況易被忽略.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{14}$ | B. | $\sqrt{15}$ | C. | 4 | D. | $\sqrt{17}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1}{3}$,+∞) | B. | (-∞,$\frac{1}{3}$) | C. | [$\frac{1}{3}$,+∞) | D. | (-∞,$\frac{1}{3}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ρ=8sin(θ-$\frac{π}{4}$) | B. | ρ=8cos(θ-$\frac{π}{4}$) | ||
C. | ρ2-4ρcos(θ-$\frac{π}{4}$)+3=0 | D. | ρ2-4ρsin(θ-$\frac{π}{4}$)+3=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com