分析 先求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值.
解答 解:f′(x)=x′lnax+x•$\frac{a}{ax}$=lnax,
令f′(x)>0,解得:x>$\frac{1}{a}$,
令f′(x)<0,解得:0<x<$\frac{1}{a}$,
∴函數(shù)f(x)在(0,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,+∞)遞增,
∴f(x)最小值=f(x)極小值=f($\frac{1}{a}$)=$\frac{1}{a}$ln(a•$\frac{1}{a}$)=0.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用,是一道基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 8 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\stackrel{∧}{y}$=-2x+9.5 | B. | $\stackrel{∧}{y}$=-0.3x+4.2 | C. | $\stackrel{∧}{y}$=0.4x+2.3 | D. | $\stackrel{∧}{y}$=2x-2.4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com