【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S6=5S2+18,a3n=3an , 數(shù)列{bn}滿足b1b2…bn=4Sn . (Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn=log2bn , 且數(shù)列 的前n項(xiàng)和為T(mén)n , 求T2016 .
【答案】解:(Ⅰ)設(shè)數(shù)列{an}的公差為d, 則
由(1)得2a1﹣5d+9=0,
由(2)得a1=d,聯(lián)立得a1=d=3,
所以an=3n.
易知b1=64,
當(dāng)n≥2時(shí) ,又 ,
兩式相除得 , b1=64滿足上式,所以 .
(Ⅱ) , ,
,
因此 .
【解析】(I)利用等差數(shù)列的通項(xiàng)公式可得an , 利用遞推關(guān)系可得bn . (II)cn=log2bn=6n, = = ,利用“裂項(xiàng)求和”方法即可得出.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系),還要掌握數(shù)列的通項(xiàng)公式(如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式)的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】曲線 的一條切線l與y=x,y軸三條直線圍成三角形記為△OAB,則△OAB外接圓面積的最小值為( )
A. ??
B. ??
C. ??
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩陣A的變換下,坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,縱坐標(biāo)不變.
(1)求矩陣A及A﹣1;
(2)求圓x2+y2=4在矩陣A﹣1的變換下得到的曲線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)實(shí)數(shù)a,b滿足a+2b=9.
(1)若|9﹣2b|+|a+1|<3,求a的取值范圍;
(2)若a,b>0,且z=ab2 , 求z的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+2|﹣2|x﹣1|. (Ⅰ)求不等式f(x)≥﹣2的解集M;
(Ⅱ)對(duì)任意x∈[a,+∞),都有f(x)≤x﹣a成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}為等比數(shù)列,a1=1,a4=27; Sn為等差數(shù)列{bn} 的前n 項(xiàng)和,b1=3,S5=35.
(1)求{an}和{bn} 的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn} 滿足cn=anbn(n∈N*),求數(shù)列{cn} 的前n 項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的莖葉圖(圖一)為高三某班50名學(xué)生的化學(xué)考試成績(jī),圖(二)的算法框圖中輸入的ai為莖葉圖中的學(xué)生成績(jī),則輸出的m,n分別是( )
A.m=38,n=12
B.m=26,n=12
C.m=12,n=12
D.m=24,n=10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】程序框圖如圖:如果上述程序運(yùn)行的結(jié)果S=1320,那么判斷框中應(yīng)填入( )
A.K<10
B.K≤10
C.K<11
D.K≤11
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com