14.若f(x)=ex-1,則$\underset{lim}{t-0}$$\frac{f(1-t)-f(1)}{t}$=-1.

分析 利用導(dǎo)數(shù)的定義及其運(yùn)算法則即可得出.

解答 解:f(x)=ex-1,f′(x)=ex-1
則$\underset{lim}{t-0}$$\frac{f(1-t)-f(1)}{t}$=-$\underset{lim}{t→0}$$\frac{f(1)-f(1-t)}{t}$=-f′(1)=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的定義及其運(yùn)算法則,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,池塘的邊緣為曲線(xiàn)段OMB,它可以近似看成是函數(shù)f(x)=x2在0≤x≤6的圖象,BA垂直于x軸于點(diǎn)A,現(xiàn)要建一個(gè)以A為直角的觀(guān)光站臺(tái)△APQ,其中斜邊PQ與曲線(xiàn)段OMB相切于點(diǎn)M(t,t2),切線(xiàn)PQ交x軸于點(diǎn)P,交線(xiàn)段AB于點(diǎn)Q,圖中的陰影部分種植草坪.
(1)將△QAP的面積表達(dá)為t的函數(shù);
(2)求草坪的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a4+a7=20,對(duì)任意的k∈N都有Sk+1=3Sk+k2,數(shù)列{bn}的前n項(xiàng)和為T(mén)n=2n+1-2.
(I) 求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列a1bn,a2bn-1,…,an-1b2,anb1各項(xiàng)的和Gn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知F1、F2是橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn),P是橢圓上一點(diǎn),且PF2⊥F1F2,∠PF1F2=$\frac{π}{6}$.則橢圓的離心率是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=2cos($\frac{x}{2}$-$\frac{π}{3}$)+1
(1)求f(x)的最小正周期;對(duì)稱(chēng)軸方程和對(duì)稱(chēng)中心的坐標(biāo)
(2)求f(x)在區(qū)間[0,2π]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)y=$\frac{{x}^{2}+1}{x-1}$(x>1)的最小值是2+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某校為了研究學(xué)生的性別和對(duì)待某一活動(dòng)的態(tài)度(支持和不支持)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=8.076,則有多大的把握認(rèn)為“學(xué)生性別與支持該活動(dòng)有關(guān)系”( 。
附:
P(k2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
A.0.1%B.1%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為( 。
A.1B.eC.e2016D.e2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x+$\frac{a}{x}$,且f(1)=10.
(1)求a的值;
(2)判斷f(x)的奇偶性,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案