某小組有7個(gè)同學(xué),其中4個(gè)同學(xué)從來(lái)沒(méi)有參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),3個(gè)同學(xué)曾經(jīng)參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng).
(Ⅰ)現(xiàn)從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),求恰好選到1個(gè)曾經(jīng)參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率;
(Ⅱ)若從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),活動(dòng)結(jié)束后,此時(shí)該小組沒(méi)有參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)個(gè)數(shù)ξ是一個(gè)隨機(jī)變量,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.
【答案】
分析:(Ⅰ)本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件數(shù)C
72,滿足條件的事件數(shù)是C
41C
31,根據(jù)等可能事件的概率公式代入數(shù)據(jù)求出結(jié)果.
(2)該小組沒(méi)有參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)個(gè)數(shù)ξ,隨機(jī)變量ξ的可能取值是2,3,4,結(jié)合變量對(duì)應(yīng)的事件和等可能事件的概率,寫(xiě)出變量的概率,分布列和期望值.
解答:解:(Ⅰ)由題意知本題是一個(gè)等可能事件的概率,
試驗(yàn)發(fā)生包含的事件數(shù)C
72,
滿足條件的事件數(shù)是C
41C
31記“恰好選到1個(gè)曾經(jīng)參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)”為事件的A,
則其概率為
.
(Ⅱ)該小組沒(méi)有參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)個(gè)數(shù)ξ
隨機(jī)變量ξ的可能取值是2,3,4
;
;
;
∴隨機(jī)變量ξ的分布列為
∴
.
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列和期望,考查等可能事件的概率,考查利用概率知識(shí)解決實(shí)際問(wèn)題,這種題目可以作為高考卷中的解答題目出現(xiàn),考查的知識(shí)點(diǎn)和難易程度非常合適.
科目:高中數(shù)學(xué)
來(lái)源:2010年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版)
題型:解答題
某小組有7個(gè)同學(xué),其中4個(gè)同學(xué)從來(lái)沒(méi)有參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),3個(gè)同學(xué)曾經(jīng)參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng).
(Ⅰ)現(xiàn)從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),求恰好選到1個(gè)曾經(jīng)參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率;
(Ⅱ)若從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),活動(dòng)結(jié)束后,此時(shí)該小組沒(méi)有參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)個(gè)數(shù)ξ是一個(gè)隨機(jī)變量,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:2010年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版)
題型:解答題
某小組有7個(gè)同學(xué),其中4個(gè)同學(xué)從來(lái)沒(méi)有參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),3個(gè)同學(xué)曾經(jīng)參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng).
(Ⅰ)現(xiàn)從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),求恰好選到1個(gè)曾經(jīng)參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率;
(Ⅱ)若從該小組中任選2個(gè)同學(xué)參加數(shù)學(xué)研究性學(xué)習(xí)活動(dòng),活動(dòng)結(jié)束后,此時(shí)該小組沒(méi)有參加過(guò)數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)個(gè)數(shù)ξ是一個(gè)隨機(jī)變量,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ.
查看答案和解析>>