已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,且橢圓經(jīng)過(guò)點(diǎn)N(2,-3).
(1)求橢圓C的方程.
(2)求橢圓以M(-1,2)為中點(diǎn)的弦所在直線的方程.
分析:(1)由離心率的值、橢圓經(jīng)過(guò)點(diǎn)N(2,-3),及a、b、c之間的關(guān)系,求出a、b的值,進(jìn)而得到橢圓C的方程.
(2)設(shè)出以M為中點(diǎn)的弦的兩個(gè)端點(diǎn)的坐標(biāo),代入橢圓的方程相減,把中點(diǎn)公式代入,可得弦的斜率,點(diǎn)斜式
寫(xiě)出弦的方程,并化為一般式.
解答:解:(1)∵橢圓經(jīng)過(guò)點(diǎn)(2,-3),∴
22
a2
+
(-3)2
b2
=1,
又 e=
c
a
=
1
2
,解得:a2=16,b2 =12,所以,橢圓方程為
x2
16
+
y2
12
=1.
(2)顯然M在橢圓內(nèi),設(shè)A(x1,y1),B(x2,y2)是以M為中點(diǎn)的弦的兩個(gè)端點(diǎn),
x
2
1
16
+
y
2
1
12
=1,
x
2
2
16
+
y
2
2
12
=1,相減得:
(x2-x1)(x2+x1)
16
+
(y1+y2)
12
=0,
整理得:k=-
12(x1+x2)
16(y1+y2)
=
3
8
,∴弦所在直線的方程  y-2=
3
8
(x+1),即:3x-8y+19=0.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程和簡(jiǎn)單性質(zhì),中點(diǎn)公式及斜率公式的應(yīng)用,以及直線方程的點(diǎn)斜式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過(guò)點(diǎn)P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長(zhǎng)為2
3
,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
,
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長(zhǎng)軸長(zhǎng)是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過(guò)點(diǎn)P(0,-2)的直線l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過(guò)橢圓C的右頂點(diǎn)A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長(zhǎng)為2,離心率為
2
2
,設(shè)過(guò)右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過(guò)A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案