精英家教網 > 高中數學 > 題目詳情

【題目】下列命題中正確的是 ( )

A.由五個平面圍成的多面體只能是四棱錐

B.棱錐的高線可能在幾何體之外

C.僅有一組對面平行的六面體是棱臺

D.有一個面是多邊形,其余各面是三角形的幾何體是棱錐

【答案】B

【解析】

試題由五個平面圍成的多面體除四棱錐外,還可以是三棱臺;棱錐的高線應是其頂點向底面所作垂線段,斜棱錐的高即在幾何體外,故選B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓,點

(1)過點的直線與圓交與兩點,若,求直線的方程;

(2)從圓外一點向該圓引一條切線,切點記為,為坐標原點,且滿足,求使得取得最小值時點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】經過長期觀測得到:在交通繁忙的時段內,某公路汽車的車流量(千輛/ )與汽車的平均速度之間的函數關系式為

(I)若要求在該段時間內車流量超過2千輛/ ,則汽車在平均速度應在什么范圍內?

(II)在該時段內,當汽車的平均速度為多少時,車流量最大?最大車流量為多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題:,使等式成立是真命題.

1求實數的取值集合;

2設不等式的解集為,若的必要不充分條件,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本小題滿分12分已知數列滿足,若等比數列,且

1;

2,記數列的前項和為,

I;

II求正整數,使得對任意均有

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某隧道設計為雙向四車道,車道總寬為,要求通行車輛限高,隧道全長為,隧道的拱線可近似的看成半個橢圓形狀.

1若最大拱高,則隧道設計的拱寬是多少?

2若最大拱高不小于,則應如何設計拱高和拱寬,才能使隧道的土方工程量最。

注: 1.半個橢圓的面積公式為;2.隧道的土方工程量=截面面積隧道長

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是我國古代內容極為豐富的數學名著,書中將底面為直角三角形的直棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵與芻童的組合體中,.臺體體積公式:,其中分別為臺體上、下底面面積,為臺體高.

(Ⅰ)證明:直線 平面;

(Ⅱ)若,,,三棱錐的體積,求該組合體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了了解某年級同學每天參加體育鍛煉的時間,比較恰當地收集數據的方法是(

A.查閱資料B.問卷調查C.做試驗D.以上均不對

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量, , ,函數,已知的圖像的一個對稱中心與它相鄰的一條對稱軸之間的距離為1,且經過點

(Ⅰ)求函數的解析式

(Ⅱ)先將函數圖像上各點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,再向右平移 個單位長度,向下平移3個單位長度,得到函數的圖像,若函數的圖像關于原點對稱,求實數的最小值.

查看答案和解析>>

同步練習冊答案