【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中, ,平面平面

Ⅰ)求證: ;

Ⅱ)在線段上是否存在點(diǎn),使直線與平面所成的角為?若存在,求的值,若不存在,說(shuō)明理由.

【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析.

【解析】試題分析:(1)由條件中,平面平面,結(jié)合線面垂直的性質(zhì)定理,可以證明線面垂直,從而證明線線垂直(2)建立空間坐標(biāo)系,求出法向量,然后根據(jù)題意計(jì)算是否存在點(diǎn)滿足要求

解析:(Ⅰ)證明:在直三棱柱中,平面ABC,故,
由平面平面,且平面平面,
所以平面,
平面,所以
(Ⅱ)證明:在直三棱柱中,平面ABC,
所以,,
,所以,如圖建立空間直角坐標(biāo)系,
根據(jù)已知條件可得,,,,,,
所以,,
設(shè)平面的法向量為,

,則,,于是,

平面的法向量為
設(shè),,
,
若直線DP與平面成角為,則,
計(jì)算得出,
故不存在這樣的點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列的前項(xiàng)和記為, ,點(diǎn)在直線上,

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè) , 是數(shù)列的前項(xiàng)和,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn)

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與圓相切于點(diǎn),與橢圓只有一個(gè)公共點(diǎn).

①求 ;

②當(dāng)為何值時(shí), 取得最大值?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直三棱柱中, , 為棱的中點(diǎn).

(Ⅰ)探究直線與平面的位置關(guān)系,并說(shuō)明理由;

(Ⅱ)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家舉行大型的促銷(xiāo)活動(dòng),經(jīng)測(cè)算某產(chǎn)品當(dāng)促銷(xiāo)費(fèi)用為萬(wàn)元時(shí),銷(xiāo)售量萬(wàn)件滿足(其中, 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷(xiāo)售量相等,已知生產(chǎn)該產(chǎn)品萬(wàn)件還需投入成本萬(wàn)元(不含促銷(xiāo)費(fèi)用),產(chǎn)品的銷(xiāo)售價(jià)格定為萬(wàn)元/萬(wàn)件.

(1)將該產(chǎn)品的利潤(rùn)萬(wàn)元表示為促銷(xiāo)費(fèi)用萬(wàn)元的函數(shù);

2)促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖像如圖所示,則下列結(jié)論中一定成立的是(  )

A. 函數(shù)f(x)有極大值f(2)和極小值f(1) B. 函數(shù)f(x)有極大值f(-2)和極小值f(1)

C. 函數(shù)f(x)有極大值f(2)和極小值f(-2) D. 函數(shù)f(x)有極大值f(-2)和極小值f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形的邊長(zhǎng)為,且其

三個(gè)頂點(diǎn)均在拋物線.

(Ⅰ)求拋物線的方程;

(Ⅱ)設(shè)動(dòng)直線與拋物線相切于點(diǎn),與直線

相交于點(diǎn).證明以為直徑的圓恒過(guò)軸上某定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某大型景區(qū)有兩條直線型觀光路線, , ,點(diǎn)位于的平分線上,且與頂點(diǎn)相距1公里.現(xiàn)準(zhǔn)備過(guò)點(diǎn)安裝一直線型隔離網(wǎng) (分別在上),圍出三角形區(qū)域,且都不超過(guò)5公里.設(shè), (單位:公里).

(Ⅰ)求的關(guān)系式;

(Ⅱ)景區(qū)需要對(duì)兩個(gè)三角形區(qū)域, 進(jìn)行綠化.經(jīng)測(cè)算, 區(qū)城每平方公里的綠化費(fèi)用是區(qū)域的兩倍,試確定的值,使得所需的總費(fèi)用最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于點(diǎn)A,B,交其準(zhǔn)線l于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為(   )

A. y2=9x B. y2=6x C. y2=3x D. y2x

查看答案和解析>>

同步練習(xí)冊(cè)答案