(2006•崇文區(qū)一模)已知函數(shù)f(x)是R上的減函數(shù),A(0,-2)、B(-3,2)是其圖象上的兩點,則y=|f(x-2)|-2(y>0)的圖象可能是(  )
分析:通過函數(shù)值恒為正數(shù)排除A選項,再通過取,2,-1處的函數(shù)值排除C,D選項.
解答:解:因為y=|f(x-2)|-2,(y>0),所以排除A選項.
因為函數(shù)f(x)是R上的減函數(shù),A(0,-2)、B(-3,2)是其圖象上的兩點,
當(dāng)x=2時   y=|f(2-2)|-2=|f(0)|-2=2-2=0,所以排除D選項.
當(dāng)x=-1時   y=|f(-1-2)|-2=|f(-3)|-2=2-2=0,所以排除C選項.
故選B.
點評:本題考查函數(shù)的圖象問題,本題是選擇題,應(yīng)重點觀察各選項的區(qū)別點從而應(yīng)用排除法,本題區(qū)別點在于函數(shù)值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)如果復(fù)數(shù)
1+bi
1+i
(b∈R)的實部和虛部互為相反數(shù),則b等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)已知直線m、n及平面α、β,則下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)如圖,直三棱柱ABC-A′B′C′中,CB⊥平面ABB′A′,點E是棱BC的中點,AB=BC=AA′
(I)求證直線CA′∥平面AB′E;
(II)求二面角C-A′B′-B的大;
(III)求直線CA′與平面BB′C′C所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)某足球賽事中甲乙兩中球隊進入決賽,但乙隊明顯處于弱勢,乙隊為爭取勝利決定采取這樣的戰(zhàn)術(shù):頑強防守,0:0逼平甲隊,進入點球大戰(zhàn).現(xiàn)規(guī)定:點球大戰(zhàn)中每隊各出5名隊員,且每名隊員都踢一球,假設(shè)在點球大戰(zhàn)中雙方每名運動員進球概率均為
34
.求:
(I)乙隊踢進4個球的概率有多大?
(II)5個點球過后是4:4或5:5平局的概率有多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•崇文區(qū)一模)已知f(x)=ax3+x2+cx是定義在R上的函數(shù),f(x)在[-1,0]和[4,5]上是減函數(shù),在[0,2]上是增函數(shù).
(I)求c的值;
(II)求a的取值范圍;
(III)在函數(shù)f(x)的圖象上是否存在一點M(x0,y0),使得曲線y=f(x)在點M處的切線的斜率為3,若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案